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Coexistence of Diagonal and OfI'-Diagonal Long-Range Order: A Monte Carlo Study
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The zero temperature properties of interacting two dimensional lattice bosons are investigated.
%'e present Monte Carlo data for soft-core bosons that demonstrate the existence of a phase in which
crystalline long-range order and off-diagonal long-range order (superfluidity) coexist. We comment
on the difference between hard- and soft-core bosons and compare our data to mean-field results
that predict a larger coexistence region. Furthermore, we determine the critical exponents for the
various phase transitions.
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The possibility of a phase in dense Bose systems in
which diagonal and off-diagonal long-range order (LRO)
coexist has been the subject of discussion over the past
25 years [1,2]. Normally bosons at zero temperature are
either superfluid (with off-diagonal LRO) or solid (with
diagonal LRO). However, for a finite range of the in-
teractions between the bosons a coexistence phase was
predicted within a mean-field approximation [3—6]. This
phase was interpreted in terms of Bose-Einstein conden-
sation of vacancies in the solid, thereby forming a su-
perBuid solid or supersolid. Experiments have been per-
formed on 4He, but no positive identification of this co-
existence phase has yet been made. There are, however,
strong hints towards such a phase [7]. On the theoret-
ical side the discussion was restricted to the mean-field
level. We are not aware of any more rigorous studies that
identified a supersolid phase. In this Letter we report on
Monte Carlo simulations of soft-core bosons on a square
lattice in two dimensions that clearly demonstrate the
existence of the supersolid phase beyond the mean-field
approximation.

In general, lattice bosons are described by the Bose-
Hubbard model [8]. In the limit where the average
number of bosons per site is large, this model can be
mapped exactly onto the quantum phase model which is

in the same universality class. This model also describes
Josephson junction arrays [9] in which the lattice sites
are superconducting islands and the bosons are prefabri-
cated Cooper pairs. The specific model we investigate is

defined by the quantum phase Hamiltonian

number of nearest neighbors (four) times Ui has to be
smaller than Uo. The properties of the model (1) are
periodic in no = y/ P,. U,s with period 1.

To gain understanding of the zero temperature prop-
erties of the model described by the Hamiltonian (1),
we first discuss the mean-field phase diagram that is ob-
tained following the method of Roddick and Stroud [6].
The phase diagram is shown in Figs. 1 (a) and l(b) for
Ui/Us=0. 125 and 0.2, respectively [10]. It is periodic in

no with period 1 and symmetric around no ——&. We dis-
cern four different phases: the superfluid phase (I), two
incompressible Mott-insulating phases (II and III), and a
compressible supersolid phase (IV). Phases I and IV have
a nonzero superfiuid stiffness pc. Phases III and IV have
nontrivial crystalline order ("checkerboard"; see the in-

sets to Fig. 1) and therefore a nonzero (ir, n) component
of the static structure factor S~. Thus, in the supersolid
phase nontrivial diagonal LRO (S g 0) and off-diagonal
LRO (po g 0) coexist. In this phase the macroscopic
wave function that ensures superBuidity is modulated on
a short distance in order to reduce the interaction energy.

The phase diagram for hard-core bosons was investi-

gated in Refs. [3—5]. In that limit a supersolid phase
is possible only in the presence of next nearest neigh-

bor interactions. The difference with soft-core bosons is
the lack of multiple occupation. Indeed, the expectation
value for two soft-core bosons to be at the same site is

nonzero in phase IV in Fig. 1 [ll]. We conclude that
the possibility for bosons to hop over or past each other
enhances the supersolid phase.

The points marked n, P, and p in Fig. 1 have particle-
hole symmetry. This means that the cost in interaction
energy is the same for adding or removing a boson. Point
o. and the phase boundary between phases I and II were

investigated in Refs. [8,12]. Point o; and the line sepa-

rating phases I and II have a different dynamical critical
exponent z. This exponent determines the space-time
asymmetry. The correlation length in the time direction
diverges like ( (', if ( is the correlation length in the

space directions. Because of particle-hole symmetry the
superconductor-insulator transition at point n has a dy-

namical critical exponent z = 1. The transition is in the

H = —) n, U,~ns —p) n, —t) cos(P, —P~) (1).
U (ij)

The number of excess bosons and the phase on site i
are denoted by n, and P, . Number and phase are con-
jugate variables that satisfy the commutation relation
[n, , P, ] = ib,~ The hop.ping is written as a Josephson
phase coupling, with matrix element t. The average den-
sity of bosons is controlled by the chemical potential p, .
The interaction U,~ between bosons is chosen to be short
range, i.e. , on-site and nearest neighbor interactions, Uo

and Uq, only. A natural stability condition is that the
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3D XY universality class. For na $0 the transition has
z = 2 and mean-field exponents apply. The same holds
for point P and the line separating phases III and IV [12).
Motivated by these observations we also expect point p
to have z = 1, whereas for the transition at nc P z from
phase I to IV we expect z = 2. Below we show that
this is consistent with our Monte Carlo data. The points
marked 6 in Fig. 1 have a first order transition, as the
density jumps from 0 in phase II to 2 in phase III.

Since fiuctuations around the mean-field solution are

likely to be important in two dimensions, one might won-

der if the supersolid phase survives in an exact treatment.
To investigate this question we performed Monte Carlo
simulations of the model described by the Hamiltonian

(1). We follow closely the method used by S@rensen et at.

[13]. Thus, we map our two dimensional quantum model
onto a three dimensional classical model of divergence-
free current loops [we use the Villain form [14] for the
cosine in Eq. (1); see Ref. [15] for a derivation]. The
relevant quantity is then the partition function

&J~=o,+1, I

2 . f U1 2
exP &

— —) (J, —no)
~

6,~+ —6&,~l ~ (J; —n11)+ ) (J;,)
0

U7 CT)G=X)Q

(2)

where the sum is over divergence-free discrete current
configurations that satisfy 'V„J"= 0 (p = z, y, 7) and

6&;~l equals 1 for nearest neighbors and is 0 otherwise.
The time components of the currents correspond directly

.::..::. ~::::::::I~ .::::::~::.:::-:::::

:.::.::.:~.::.::::.:~
~:::.::::::~::::::

to the particle numbers, J; = n;. The coupling constant
K = 8f t/Up, where the function f depends on the time-
lattice spacing and the coupling. Here f is smaller than,
but of the order of unity [11,14].

Using the standard Metropolis algorithm we generate
configurations of currents in a system of size L x L x L
with periodic boundary conditions. We work in the
grand-canonical ensemble at fixed ns in order to make
contact to the phase diagrams in Fig. 1. As we are inter-
ested in a possible supersolid phase, the relevant quanti-
ties to measure are the superfiuid stifFness for off-diagonal
LRO and the structure factor for diagonal LRO.

In terms of the currents J" the superfiuid stiffness (he-
licity modulus) is an average over loop configurations,

1/16 1/8 i/Up 3/16

1
Po= 2 .J

4)T

(3)

A0

1/16 1/8 t/Up 3/16

The behavior near the transition satisfies the finite size
scaling relation [16] po = Lz " 'p(bL / 6, L~/L') with

P a universal scaling function, b a nonuniversal scale
factor, v the coherence-length critical exponent, and
6 = (K —K')/K' the distance to the transition. At
the critical point K = K', 6 = 0, and L'po is a function
of L /L' only. Thus, plots of L'pc vs K will intersect
at the transition if L /L' is kept constant. Furthermore,
the data for L*pc plotted as a function of L 1/" 6 for dif-
ferent system sizes should collapse onto one single curve.
This allows the exponent v to be determined. A similar
scaling relation holds for the structure factor [17]

FIG. 1. Phase diagrams for soft-core bosons with on-site
snd nearest neighbor interaction. (s) Uq/Uo=0. 125. (b)
Uq/U0=0. 2. There sre four difFerent phases. I: supercon-
ductor; II: Mott insulating; III: Mott insulating with checker-
board charge order; and IV: supersolid. The points marked
n, P, snd p have particle-hole symmetry The poin.ts marked
6 have s first order transition. The insets to (s) show the
density distribution in the checkerboard, the supersolid, and
the superfluid phases. In (b) the transition points from the
Monte Carlo data are plotted as O and for ofF-diagonal and
diagonal LRO, respectively.

t+g JT
T

$g )T

i.e. , S~ = L 2//"S(b'L1/"6, L /L'), with the order pa-
rameter exponent P. By a three parameter fit to the
scaling relation for different system sizes the exponents
v and P as well as the critical coupling constant K' are
determined.

In the simulations we took Ur/Us=0. 2 in order to have
a large coexistence phase. YVe performed simulations for
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TABLE I. Critical couplings and exponents for the di8'erent transitions.

AO

0.5
0.4
0.2
0.1
0.0

K
0.837+0.005
0.749+0.006

0.65+0.08
0.44+0.08
0.5+0.1

0.49+0.11
0.61+0.08

Mean-field:
3D XY:

The transition for
OfF-diagonal LRO

K
0.?75+0.005
0.645+0.008
0.446+0.005
0.707+0.007
0.843+0.005

Diagonal LRO

0.55+0.05
0.5+0.1

For comparison:
1/2
2/3

0.21+0.04
0.25+0.10

1/2
1/3

constant no= 0.5, 0.4, 0.2, 0.1, and 0 and varied the cou-
pling K. In the phase diagrams in Fig. 1 this corresponds
to moving on horizontal lines through the phase transi-
tion(s). For no= 0.5 and 0 we simulated L x L x L sys-
tems, where I= 6,8,10,12, as suggested by particle-hole
symmetry and z = 1. Typically 100000 sweeps through
the lattice were needed for equilibration and the same
amount for measurement. For np ——0.4, 0.2, and 0.1 we
have z = 2. In order to keep the ratio L /L' constant,
we simulated L x L x L2/4 systems, where L= 6,8,10. For
the largest system with L~= 25 we made up to 400000
sweeps through the lattice for equilibration and the dou-
ble for measurement. The results are summarized in Figs.
2—4 and Table I.

First we discuss our data for no=0.5. Figure 2 shows
that there are two separate transitions for diagonal and
off-diagonal I RO with a coexistence region in between
where both the superfluid stiffness and the structure fac-
tor scale to a finite value in the thermodynamic limit.
This demonstrates the coexistence of diagonal LRO and

og diagonal LRO-for soft core boso-ns with nearest neigh
bor interaction in two dimensions. In the neighborhood
of the critical points the data fall onto a single curve when
plotted as a function of L~/"b for a suitable choice of v

and P. An example is shown in Fig. 3. Table I shows that
the exponent v is different for the two transitions. For
the transition related to superfluidity (point P in Fig. 1)

we find a value for v that is consistent with the 3D XY
universality class. The universality class of the transition
related to crystalline order (point y) is not known.

Also at np ——0.4 we find two separate transitions with
diKerent exponents that are the boundaries for the su-
persolid phase in between; see Table I and Fig. 4. The
transition related to superfluidity (the line separating
phases III and IV in Fig. 1) has v -0.5 which is con-
sistent with a mean-field transition in d+ z = 4 effective
dimensions. The transition related to crystalline order
(between phases I and IV) has an order-parameter expo-
nent P =0.25. This rules out a mean-field transition for
diagonal LRO, although the transition is electively four
dimensional. In the neighborhood of this transition, fluc-
tuations of the x, y components of the currents J induce
long-range interactions for the ~ components of the cur-
rents J [ll]. It is likely that these long-range interactions
are a relevant perturbation and suppress the exponent P.

Finally the data for np ——0.2, 0.1, and 0 are listed in
Table I. Here there is only one phase transition, as the
Mott-insulating lobes (phase II in Fig. 1) do not have any
nontrivial crystalline order. Our data are consistent with
a transition in the 3D XY universality class for np=0 and
with a mean-field transition for np ——0.1 and 0.2.

P0L
-0.2
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0 78

0.7—
0

0.6

0.:3
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0.3—

0. 1

V: 0.63

= 0.775

0.75 0.77 0.79 0.81 0.83 0.85 I~

FIG. 2. Data for I po and I 8 with ~=0.78 vs K at
~2

no=0.5. The curves cross at K'=0.775 and 0.837, respec-
tively. The region in between is the supersolid phase.

P Ll/u

FIG. 3. Data for po at no ——0.5 in the neighborhood of the
critical point at K'=0.775. Plotted is Ipo vs bI ~" with
&=0.65. Curves for different system sizes collapse onto a sin-

gle curve. The drawn lines are a low order polynomial fit
to the data. Inset: a plot of po vs the inverse system size
for K=0.86 (upper), 0.82, 0.775 (at the transition), and 0.74
(lower). The line is a guide to the eye.
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L2

0.63

x6x 9
8x8xl

10x10x2

0.64 0.65 0.66 I&

phase is smaller than one would deduce from mean-field
theory. We suggest that the coexistence phase may be
observed in two dimensional systems such as Josephson
junction arrays or thin 4He 6lms on suitable substrates.
In these systems the possibility to vary the coupling con-
stants as well as the chemical potential should make it
possible to tune through the supersolid phase and see two
sequential phase transitions.

We acknowledge the help and suggestions of R. Fazio,
C. Bruder, G. Schon, and G.T. Zimanyi. This work
is part of "Sonderforschungsbereich 195" which is sup-
ported by the Deutsche Forschungsgemeinschaft.
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Using the explicit form of the function f that relates
the coupling constants K and t/Uo, as given in Refs.
[11,14], we compare in Fig. 1(b) the Monte Carlo data
for the location of the phase transitions with the mean-
field phase diagram. If the transition is mean field, the
Monte Carlo data agree very well with the mean-field
prediction. At the tips of the insulating lobes at no= 0
and 0.5, fluctuations reduce the superfluid phase as com-
pared to the mean-field phase diagram. This makes the
insulating lobes sharper, in accordance with the analysis
of Ref. [18). From Fig. 1(b) it is clear that mean-field
theory overestimates severely the crystalline phase, and
therefore the size of the supersolid phase.

In conclusion we have performed Monte Carlo simula-
tions on soft-core lattice bosons in two dimensions that
establish the existence of a supersolid phase in which di-
agonal and off-diagonal long-range order coexist. We es-
timated critical exponents as listed in Table I. The mean-
field phase diagram of Ref. [6] is qualitatively confirmed.
However, our simulations indicate that the supersolid

I I I I

0.73 0.74 0.75 0.76

FIG. 4. Data for po and S at no ——0.4. The drawn lines
are a low order polynomial fit to the data. (a) L po vs K.

~2The curves cross at K'=0.645. (b) L S vs K with ~=1.0.
The curves cross at K =0.749.
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