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We investigate the electron addition spectrum in a class of Hubbard-like models which describe
arrays of coupled quantum dots. Interdot tunneling leads to a sequence of two phase transitions
separating a region of collective Coulomb blockade from a region where the Coulomb blockade of
individual dots is maintained and a region where the Coulomb blockade is destroyed altogether.
Observable experimental consequences of our theory are discussed.
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Arrays of coupled quantum dots [1,2] provide a novel

system in which one can study "solid-state" physics on a
much lower energy scale. Because of the dominant role

played by electron-electron interactions in quantum dots,
as manifested in the phenomenon of the Coulomb block-
ade [3], it is expected that quantum dot arrays should
mimic the physics of the Hubbard model, which has been
studied extensively in the context of high-T, supercon-
ductivity. To date, theoretical treatments of quantum
dot arrays have focused largely on arrays of metallic dots

[4], where the discreteness of the dot energy levels can
be neglected, or arrays with nearly transparent barriers
between dots [5], where the Coulomb blockade is absent.
In this Letter, we investigate the electron addition spec-
trum in arrays of four coupled semiconductor quantum
dots in the Coulomb blockade regime and its vicinity us-

ing a generalized Hubbard model to account for the ef-

fects of quantum confinement, intradot Coulomb inter-

actions, and interdot tunneling. We find a remarkably
rich phase diagram for tunneling-coupled quantum dot
arrays which generically exhibits three phases: For weak

interdot tunneling, the quantum dot states are split into
minibands but the Coulomb blockade of individual dots
is maintained; for intermediate tunneling strengths, the
Coulomb blockade of individual dots is destroyed but
there remains an energy gap of collective origin anal-

ogous to the energy gap in a Mott insulator (collec-
tive Coulomb blockade); and for strong tunneling, the
Coulomb blockade is destroyed altogether. We argue that
the experimental conductance spectra of Refs. [1,2] pro-

vide evidence for the existence of the latter transition—
which is the analog of the Mott-Hubbard insulator-metal
transition —in a one-dimensional (1D) array of quantum
dots.

The system we wish to model consists of a linear or
square array of identical quantum dots electrostatically
defined [1,2] in a 2D electron gas, separated from a metal-

lic backgate by a thin insulating layer. We consider the
case where each quantum dot contains several electrons

(n ) 10) and the applied magnetic field is weak; then the
electron-electron interactions within the parabolic con-

fining potential of a single dot are rather well described

by a self-consistent Hartree energy, and for small vari-

ations about some large, fixed n, can be parametrized
by a capacitive charging energy U = ez/C(n), in ac-
cordance with the Coulomb blockade picture [3]. Longer
range Coulomb interactions are screened by the backgate.
We wish to model collective phenomena at the meV en-

ergy scale in GaAs quantum dots of area (100 nm);
given the density of states in GaAs of (2.7 rneV i)/(100
nm)2, it will be adequate to consider only the M = 3
or 4 single-particle energy levels in the confining poten-
tial of an isolated dot which are nearest the Fermi level,

s, n = 1, . . . , M (n specifies the quantum state of both
the orbital and spin degrees of freedom), which we take
to be nondegenerate with level spacing 6 (the spin de-

generacy can be lifted by a magnetic field or by spin-
orbit coupling). The dominant efFect of interdot cou-

pling in such a system is to introduce a tunneling matrix
element ta between equivalent single-particle states in

nearest-neighbor dots. We neglect the tunneling matrix
elements between nonequivalent states; this is the usual

tight-binding approximation, and is justified for nearly
identical dots provided t is not too large. The Hamilto-

nian is

H = —) (t cI c„+H.c.)+) s cI c;
(~ j) j.ck

U+ —) rr„(n„—1j, (1)

where i, j are vectors of integers labeling the positions of
the dots, c~ is the creation operator for an electron in

state n of the jth dot, nJ = Q ct cz, and the sum over

(i, j) is over nearest neighbors only. Since the phase di-

agram which we propose for tunneling-coupled quantum
dot arrays is not expected to depend sensitively on the
details of the Hamiltonian, the simplifications involved

in Eq. (1) should be irrelevant.
In this Letter, we calculate the equilibrium electron

addition spectrum of (1), B(N)/Bp = kT B2 ln Z/Bp2,
by numerically diagonalizing 0 and evaluating the grand
partition function Z = Tr(exp[ —(H —pN)/kT]). For
the system of 4 quantum dots with M = 4 levels/dot, Z
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involved a sum over 65536 states. The differential self-
capacitance of the experimental quantum dot system [6]
is given by BQ/BV = e B(N)/By„providedthe tunneling
rate from the backgate is much less than kT/h

We first consider an array of four quantum dots ar-
ranged in a square with three single-particle energy levels
per dot, and study the evolution of the addition spectrum
as the interdot tunneling is increased (see Fig. 1). Here
we have set the tunneling matrix elements for all three
quantum levels equal to t and have taken 6 = 0.3U and
kT = 0.04U. At t = 0, the behavior characteristic of
isolated dots [3] is evident in Fig. 1, namely, three peaks
separated by the Coulomb blockade energy U+ b, . Each
peak at t = 0 represents the addition of four electrons
to the array (one to each quantum dot). As t is in-
creased, the quantum dot states are split into minibands
and each capacitance peak is split into three peaks, the
central peak representing the addition of two electrons at
the same value of the chemical potential. When t
this degeneracy is lifted and one can see three Hubbard
minibands, each composed of four states. Finally, when
t U/2 the energy gap between the minibands is no
longer discernible.

Figure 1 shows evidence of three distinct phases in the
quantum dot array, which we will now analyze in detail.
In the weak-tunneling phase, characterized by the degen-
eracies in the addition spectrum, B(N)/Bp has peaks at
zero temperature at p = 2t, 0 (x—2), and 2t, with this
pattern repeated, centered at U+ b, and at 2(U+ b, ).
The energies of the lowest miniband are those of non-
interacting electrons in a tight-binding band with four
lattice sites, E = —2t cos k, k = 0, +sr/2, m. This refiects
the fact that at sufficiently small t there is no admixture
of the higher single-particle states s'z and s's in the many-
body ground state, so that the Pauli principle prevents
"double occupancy" at T = 0, thus negating the interac-
tion term in Eq. (1). The minibands centered at U+ b,
and 2(U+ b) are identical, but occur when the states
ei and s2 are completely filled. The Coulomb block-
ade of the individual quantum dots is thus maintained
in this weak-tunneling phase, which is analogous to the
ferromagnetic phase of the Hubbard model in a strong
magnetic field.

As t is increased, it becomes energetically favorable to
admix the higher single-particle states s'z and ss in the
many-body ground stat" thereby allowing charge fluc-
tuations 6n~ & 1—in order to lower the kinetic energy
of the system. The degeneracies present in the weak-
tunneling phase are then lifted by the interaction term
in Eq. (1). This transition represents a breakdown of the
Coulomb blockade of individual quantum dots, and oc-
curs in Fig. 1 when t L. For the case of an infinite
1D array of quantum dots with M = 2 levels per dot,
this phase transition is equivalent to the ferromagnetic-
antiferromagnetic phase transition of the 1D Hubbard
model in a magnetic field [7], and in the limit U &) 6
the critical value of the tunneling matrix element is [7]

FIG. 1. A plot showing the evolution of the electron addi-
tion spectrum 8(N)/BIJ, as a function of the interdot tunneling
matrix element t for an array of four quantum dots with three
single-particle energy levels per dot, arranged in a square.

t, i ——(+AU/4)/(27m sin 2n—n), where n ( 1 is the filling
factor of the lowest miniband. We find that this transi-
tion is qualitatively similar for M = 3 and 4, and in
finite arrays (although it is of course not a true phase
transition in a finite array). Because t is many orders of
magnitude smaller than the band width in conventional
solid-state systems, it should be possible to observe this
phase transition at Zeeman splittings b, easily obtain-
able in the laboratory, whereas an astronomically large
magnetic field would be required to spin polarize a con-
ventional metal-oxide system.

Despite the destruction of the Coulomb blockade in the
individual quantum dots when t ) t,i, there is still an
energy gap between the minibands above this transition.
This energy gap is a collective effect which we refer to as
"collective Coulomb blockade" (CCB), and is analogous
to the energy gap in a Mott insulator [8]. The CCB
regime is characterized by strong interdot correlations
which are analogous to the antiferromagnetic correlations
in Mott insulators [9], i.e., occupancy of the state e' in
one quantum dot is anticorrelated with the occupancy of
that state in its nearest neighbors.

When t is increased still further, the energy gap be-
tween minibands in Fig. 1 collapses. The breakdown
of CCB [10] in the strong-tunneling regime is directly
analogous to the Mott-Hubbard insulator-metal transi-
tion [8,11]. For M = 2 single-particle energy levels per
dot, this transition occurs at t/U = oo for a1D array [11],
but for M & 2, the transition is expected to occur at a fi-

nite value of t due to the absence of Fermi-surface nesting
[12]; Fig. 1 is consistent with the critical value obtained
in Ref. [12] for an infinite array with M = 3, t,2/U = 0.39
[although the metal-insulator transition (MIT) studied in
Ref. [12] occurs in an unspecified model which is merely
analogous to Eq. (1)].

To this point, we have assumed equal tunneling matrix
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ical simulation of single-particle tunneling through lD
barriers of various heights and widths at the threshold
for unit transmission gave t 4h /m'd2, with the nu-
merical prefactor ranging from 2 to 8. We therefore esti-
mate t, for the MIT of the system of Ref. [1] to be 0.5
meV, yielding the ratio t, /U ~ 0.5. This is consistent
with the theoretical prediction [12], 0.29 & t, /U & 0.39
for oo & M & 3, thus substantiating our interpretation
of the data as evidence for a Mott-Hubbard MIT.

An alternative hypothesis which could account for the
data is that the conductance of the array near pinchoff
is dominated by a single 100 nm Coulomb island, with
the electrons traveling ballistically through the rest of
the array. While the breakdown of the Coulomb block-
ade in a single dot generically occurs when G ~ e /h, the
breakdown of CCB is expected to occur at a characteris-
tic value t, /U 0.4 for a 1D array, which implies by the
arguments above that G, (O. ld/a~)fez/h for quantum
dots of size d, where a~ = 10.5 nm. Comparing the spec-
tra of Ref. [1] at Vzi ———0.44 V and —0.46 V (where the
effective size of the dots is smaller), the MIT at —0.46
V does indeed appear to occur at a smaller value of G.
A naive extrapolation of these arguments for dots larger
than 100 nm would imply G, ) e /h (more than one
channel of perfect transmission through the array), but
in that case the Hubbard model description of the system
would break down and the system would behave like a
quantum wire, with no Mott-Hubbard gap. Thus e2/h
is an upper bound on G,. Here we have implicitly as-
sumed that the barriers between the leads and the array
are comparable to the interdot barriers, as in the system
of Ref. [1]. Since the conductance of the array is propor-
tional to the coupling to the leads, one way to decrease
G, is simply to decrease the coupling to the leads, while
keeping the interdot coupling fixed.

The effects of disorder, magnetic fields, and interdot
Coulomb interactions on the above results should be
mentioned. In order for the degeneracies in the electron
addition spectrum which occur in the weak-tunneling
regime to be discernible experimentally, the disorder in
any of the parameters in Eq. (1), as well as the magni-
tude of the interdot Coulomb interactions, would have to
be less than the level spacing within a miniband, which
may be impossible to achieve in practice. The modifi-
cation of the tunneling matrix elements by the Peierls
phase factor in a magnetic field would also lift these
degeneracies. Even in the presence of these perturba-
tions, however, there remains a weak-tunneling phase in
which the Coulomb blockade of individual quantum dots
is maintained, and this phase is expected to have clear
signatures in both optical absorption and conductance
experiments. Interdot Coulomb interactions, which can
give rise to interesting efFects in arrays of electrically iso-
lated dots [13], are expected to be less important in ar-
rays coupled by tunneling, and should be irrelevant to
the phase diagram in the presence of disorder [14]. Our

model is not adequate to describe the intricate magnetic
field dependence of the electron addition spectrum in the
strong-field regime [6] because the Hubbard-type inter-
action term in Eq. (1) does not account for the strong
intradot electron correlations present there. Nonetheless,
Eq. (1) may be adequate as a phenomenological Hamilto-
nian to describe collective efFects in quantum dot arrays
at fixed field even in the strong-Geld regime.

In conclusion, we have argued on general grounds that
the interplay of quantum confinement, interdot tunnel-
ing, and strong intradot Coulomb interactions leads to
three distinct zero temperature phases in quantum dot
arrays, and have identified experimental evidence [1,2] for
the analog of the Mott-Hubbard metal-insulator transi-
tion in a 1D array of quantum dots. Our results suggest
that quantum dot arrays should provide ideal experimen-
tal systems in which to study a variety of interaction-
driven quantum phase transitions predicted to occur in
Hubbard-like models [7,8,11,12], albeit at very difFerent
energy scales (~ 1 meV) compared with what these mod-
els were originally intended for (~ 1 eV).
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