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Frequency Dependence of h/e Conductance Oscillations in Mesoscopic Ag Rings
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We have measured the complex rnagnetoconductance of disordered mesoscopic Ag rings at frequen-

cies from 250 Hz to 1.2 6Hz. Conductance oscillations with ffux period h/e are observed over the entire

frequency range. No suppression of the h/e amplitude is seen up to our highest measurement frequency,

even though it is several times the inverse sample transit time rL . An h/e-periodic imaginary part of

the conductance is observed at frequencies to+ rL . The results suggest that the h/e oscillation would

only be suppressed if at were greater than both rL ' and the thermal frequency I T/h. .

PACS numbers: 72. 15.Gd, 71.55.Jv, 72. 15.Rn

In the last ten years a rich variety of transport phe-

nomena have been discovered in mesoscopic conductors
[1]. In a mesoscopic system the sample dimensions are
less than the dephasing length L~ and the electrons retain

phase memory throughout the sample. Nearly all of the

experiments and theoretical developments in this field

have dealt with the zero-frequency conductance. A finite

measurement frequency introduces a new time scale and

may reveal qualitatively new eA'ects, particularly if the
new time scale is comparable with other characteristic
times of the system, such as the carrier transit time. For
samples in the diAusive limit the basic zero-frequency
phenomena are the universal conductance fluctuations for

simply connected samples and the Aharonov-Bohm con-

ductance oscillations for multiply connected structures
[2]. At finite frequency various nonlinear or mixing phe-

nomena have been considered [3], but the more basic
linear-response conductance and magnetoconductance at

high frequencies have hitherto not been observed.

Extending the existing theoretical understanding of
diAusive mesoscopic transport to finite frequencies is like-

ly to be nontrivial. The dc conductance depends on the

potentials at the contacts but not the detailed microscopic
electric field within the conductor. This fact underlies the

scattering matrix or Buttiker-Landauer theory of mesos-

copic transport [4], and justifies the use of a spatially

averaged perturbing electric field in treatments based on

the Kubo formula [5]. By contrast, for the ac problem it

may be necessary to include the detailed spatial depen-

dence of the perturbing electric field [6]. There is a

closely related concern that electron-electron interactions

may play an important role in mesoscopics when the fre-

quency is greater than the inverse transit time across the
device [7]. These questions are fundamental to a full un-

derstanding of quantum transport, and illustrate the need

for relevant experimental data.
%e expect that the important frequency scales for a

difTusive mesoscopic device are the inverse transit time

rL ' =D/L and the thermal frequency kT/6, where T
is the device temperature, D is the electron diflusion con-

stant, and L is the device size, taken to be one-half the
circumference in the case of a ring. If the dephasing

length is not much larger than the sample size then the

dephasing rate r~ ' =D/L~ may also play a role. For

samples made from disordered metal films these frequen-

cies are typically in the rf and microwave region.
In this Letter we report measurements of the magneto-

conductance of disordered Ag rings at frequencies co/2tr

from 250 Hz to 1.2 GHz. The rings have diameters d of'

1.0 and 1.5 pm, and the parameter miL varies from 0 to

2.2 for the smaller ring, and from 0 to 6.4 and 0 to 4. 1 for

the larger ones, over the frequency range used. However,

the measurement frequencies are small compared to the

temperature of 0.3 K. The parameter hco/kT varies from

0 to 0.22 over our frequency range. The magnetoconduc-

tance data show oscillations of ffux period h/e which per-

sist to the highest measurement f'requency used. The

average magnitude of the oscillation amplitude of the real

part of the conductance does not vary significantly from a

constant from 0 to 1.2 GHz. An oscillatory imaginary

part of the conductance is observed which has a constant

average amplitude as a function of frequency f'or co~I

The rings were patterned by electron-beam lithography

on sapphire substrates using a single-layer PMMA resist.

The 18-25 nm thick Ag films were thermally evaporated

from a 99.999'Po pure source onto the substrates at a rate

ol 0.5 nm/s. The linewidths were approximately 80 nm.

The rings were patterned with two leads of' this same

width, which connected to much larger wires at their

ends. The length of each lead was chosen to be 0.5 pm to

give a tota1 sample resistance near 50 0, providing a

matched impedance for the ac measurement. Long Ag

wires of the same width as the ring conductors were

codeposited with the rings, and dc magnetoconductance

measurements were made on the wires to extract the in-

elastic dephasing length L~, and the spin-flip and spin-

orbit scattering lengths L, and L„. The lengths were ex-

tracted by fitting the wire data by de weak-localization

theory including spin effects [8,9]. Spin scattering and

dephasing lengths enter into mesoscopic efTects in the

singlet and triplet combinations Lo and L ~, where [10]

Lo =—L~ +L,

L] -'—=L, -'+I. ,
-'+ -', I,„"-
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TABLE I. Sample parameters. d is the ring diameter. Lo
and L[ are the singlet and triplet diffusion lengths, determined

by measurements of the weak-localization magnetoconductance
of long wires codeposited with the rings. D is an estimate of the
diffusion constant obtained from the dc resistance of the rings,
and rL is the diffusive transit time across the ring, equal to
(zd/2) /D. Uncertainties in Lo and L ~ are I in the last digit.

Sample d (pm) Lo (pm) L~ (pm) D (cm /s) rL (ns)

0.3

0.2

0.1

I

1ll

I

h/e

1.0
1.5
1.5

2.4
2.2
1.6

0.39
0.50
0.41

85
65

104

0.29
0.85
0.54

1.5 p.m

The diffusion constant D was estimated using D =
3 i FI,

taking the free-electron value for the Fermi velocity
(1.39&&10 m/s for Ag) and estimating the mean free

path I from the sample dimensions and the measured dc
resistance. We have shown in previous experiments on

the frequency dependence of weak localization in wires

that the diffusion constant can be estimated accurately in

this way [I I]. The parameter kFI describing the degree
of disorder was estimated to be = 200 for these rings.
The parameters characterizing the samples are given in

Table I.
All measurements were made at temperatures from

0.30 to 0.35 K in a He evaporation cryostat. The dc
measurements were made using a conventional low-

frequency bridge operated near 250 Hz. The high-

frequency measurements were made with a homodyne
reflectometer designed for the range 0.2-1.2 6Hz. The
sample was connected to the reflectometer through a
semirigid coaxial line, for which the sample served as a
lumped-element termination. The output of the reflec-
tometer measured the complex reAection coeScient of the
nominally 50 0 sample. Small changes in the reflection
coeScient are closely proportional to changes in the com-

plex conductance. The reflectometer was calibrated for
each measurement with the sample in place by comparing
its output with measurements of the dc resistance, as the

sample temperature was varied from 10 to 30 K. At
these temperatures the quantum effects are suppressed,
and the conductance change is due to changes of the
Drude relaxation time. The variation of conductance
with temperature is therefore to high accuracy purely real
and independent of frequency, up to frequencies of order
the inverse Drude time (=10' Hz for our samples).
This calibration directly determines both the magnitude
and phase of the complex magnetoconductance, eliminat-
ing the need for measurements of the electrical length of
the transmission line or any other phase shifts in the sys-
tem. A description of the circuit and further details of its
operation have been given elsewhere [12], and our
method has been demonstrated in previous experiments
on weak localization [I I].

In the experiments reported here the final connections
to the sample chip were made by Al wire bonds. All
measurements were made with a magnetic field larger

-0.3

0.5 pm
80 nm
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FIG. 1. The complex magnetoconductance of a 1.5 pm diam

Ag ring (sample 2) at 1.03 GHz, with the field perpendicular to
the plane of the ring. The conductance at the lowest field

strength (114 G) has been subtracted. The data were recorded
at 0.35 K with a dissipated power of 50 pW. A drawing of the
ring with dimensions is included.

than the critical field of Al (= 100 G) so that there was
no background magnetoconductance due to the presence
of a superconductor. The total power dissipated in the
ring and narrow leads was 50 pW in all measurements.
Tests were performed with varying excitation currents to
determine whether electrons in the sample were being
heated significantly above the substrate temperature.
The h/e amplitude increased linearly with the current I
for dissipated powers up to 70 pW, indicating no sig-
nificant electron heating. At higher currents the data
suggested an I' increase, which may be attributable to
energy averaging due to the potential difference across
the ring [13]. In addition, a test in which the substrate

temperature was varied over the range 0.35-1.0 K clearly
showed temperature dependence of the h/e amplitude, in-

dicating that the electron temperature was not saturated
at some higher value. These tests were conducted both at
dc and at 720 MHz, with similar results. Repeated con-
ductance traces taken with time delays of an hour or less
were highly reproducible.

A sample of the ac magnetoconductance data is shown

in Fig. 1. The amplitude of the oscillations in the real

part shown here is typical of that found at all frequencies
including dc, and is rather small compared to the "uni-
versal" value e /h. The amplitude at dc can be explained
as follows. First, the contribution of the spin triplet to
the oscillation should be strongly suppressed due to the
strong spin-orbit effect in Ag which gives a triplet length
L~&&L. The contribution of the singlet is limited to a
lesser degree by the length Lp, which is dominated by the
spin-flip scattering length and is comparable to the size of
the ring (see Table I). The presence of leads connecting
the ring to the measuring apparatus is known to reduce
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the oscillation amplitude [14]. Finally, at finite tempera-
ture the oscillations are suppressed by a factor [15]
(E,/kT) ', where E, is the correlation energy n hD/L .
By neglecting the triplet term, using for the singlet term a
calculation by Fal'ko [16] which includes spin-flip
scattering and the eAect of leads, and taking into account
the energy averaging at our measurement temperature,
we calculate an expected value for the dc amplitude
which agrees with the measured values to within a factor
of 2.

The rms h/e amplitudes in the rings are plotted against
frequency in Fig. 2. In order to obtain an ensemble aver-
age and a measure of the dispersion, all the magnetocon-
ductance data were broken into sets of length approxi-
mately equal to the correlation field B„which was es-
timated by examining field autocorre)ations of the data.
The amplitude in each set is thus, according to the ergod-
ic hypothesis [17], roughly equivalent to the amplitude in

a diA'erent ensemble member. The Fourier power spec-
trum of each set was calculated and the value of the
mean squared amplitude was found by integrating over a
fixed range around the peak at h/e. The distributions of
amplitudes found in this way were used to determine the
mean amplitudes with the accuracy shown by the error
bars in Fig. 2. The frequency where co~L-~ is indicated
for each sample by the vertical dashed line. The aver-

aged amplitude of the real part is seen to be essentially
constant from dc to 1.2 GHz in both 1.0 and 1.5 pm
diam rings. The imaginary part is also essentially con-
stant from 0.5 to 1.2 GHz. The phase calibration of the
reflectometer in the complex conductance plane is repro-
ducible to within a few degrees. Errors of this size are
not sufficient to explain the measured imaginary part.

One might expect from a time-domain picture of quan-
tum interference that a frequency larger than rL ' would

suppress conductance oscillations. The probability densi-

ty for an electron to arrive at a net displacement L at
time t by difl'usion is proportional to t ' exp( —L /4Dr)
in quasi one dimension; i.e., it is peaked at times of order

In the frequency domain one could expect this to
lead to a cutoA' for coiL & l. Indeed, in the theory of
weak localization [18,19], the amplitude of the Ii/2e oscil-
lations in a ring is suppressed as [Lv,(ro)/Ll exp[ —2L/
L~(co)], where L~(ro)= (L~ —ioi/—D) '~, giving just
such a cutoff. (We assume the weak-field limit for the ac
measurement field, so that time-reversal symmetry is bro-
ken only by the magnetic field. ) At dc the mean squared
amplitude of the h/e-period oscillation is suppressed by
dephasing [20] as (L~/L) exp( 2L/L~) when L—& L~
Using the substitution L~ (L~ —iso/D) '~ which
occurs in weak-localization theory would then result in an
exponential cutoff for the h/e oscillations as well. In the
case of weak localization this combination of the frequen-

cy and dephasing rate has been verified by recent experi-
ments in both quasi one [11] and quasi two [21] dimen-
sions. Our data in Fig. 2 clearly do not show this ex-
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FIG. 2. The rms amplitudes of k/e-period magnetoconduc-
tance oscillations in Ag rings (samples 1, 2, and 3) at frequen-
cies from near dc to 1.2 6Hz. The results shown here were ex-
tracted from about SOO h total measurement time. The mea-
surements were made at 0.3-0.35 K with an average dissipated
power of 50 pW. The error bars give the uncertainty ranges for
the mean amplitudes at the 90% confidence level. The size of
the error bars is a consequence of the finite number of field

correlation lengths in the data. The vertical dashed lines mark
frequencies where cot L. I.

ponential suppression with frequency for frequencies
above iI '.

e may also compare the data with the simplest possi-
ble extension of the dc theory to high frequencies. %'e

have evaluated the simplest conductance correlation dia-

gram for noninteracting electrons using the impurity
diagram technique, at nonzero frequency and at finite

temperature [22]. The calculation predicts a nearly fre-
quency-independent real part of the conductance oscilla-
tions (for ro & kT/6) and an imaginary part which is fre-

quency independent in the range r L
' & ro & kT/h

However, the theory is not in quantitative agreement with

the data. In particular, it predicts a real to imaginary
amplitude ratio near unity for r L & ro & kT/ti, which

does not seem to be consistent with the data in Fig. 2.
%'e note that a frequency-independent real amplitude

for the ensemble average, together with a frequency-
dependent imaginary amplitude for the ensemble average,
is not a violation of the Kramers-Kronig relations. In-

stead, the appearance of the imaginary part implies that,
for a particular sample at fixed Aux, the real part of the
h/e component of the conductance fluctuates as a func-

tion of frequency. Since the imaginary part is present at
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frequencies comparable to the inverse transit time rt
the data suggest that the two-frequency correlation func-

tion (ReBG(c0,8)]Re[bG(ro', 8')]) decays when ~co
—r0'~

We have observed h/e-periodic conductance oscilla-

tions at frequencies which exceed the inverse diffusive

transit time by up to a factor of 6. Although the transit

time is the characteristic time for diffusive paths which

encircle the ring, there is no large change in the

ensemble-averaged real part of the amplitude at these

frequencies. An imaginary part of the oscillation ampli-

tude is observed at frequencies of order the inverse transit

time, indicating that the conductance oscillations for a

given sample fluctuate as a function of frequency.
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