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The assumption of the existence of an asymptotic shape when ¢t — oo for the probability density
function (PDF) of an inert scalar field undergoing turbulent convection and molecular transport
[Y. G. Sinai and V. Yakhot, Phys. Rev. Lett. 63, 1962 (1989)], is generalized to include the
time evolution. Statistically quasistationary PDF's and conditional scalar dissipation rates compare
surprisingly well with direct numerical simulation data at different times. Closed form PDFs are
parametrized in terms of the flatness factor solely.

PACS numbers: 47.27.-, 02.50.-r, 05.40.+j

The existence of non-Gaussian limiting probability
density functions (PDFs) of fluctuating velocity gradi-
ents has for a long time been associated with the inter-
nal intermittency of those fields. The non-Gaussianity of
scalar fields has recently attracted the attention of both
experimentalists [1] and theoreticians [2,3]. The pres-
ence of exponential or stretched-exponential tails [4] can
be explained via simple approximations once constancy
of the normalized statistical moments is assumed to hold
after a relaxation time.

The purpose of this Letter is to explore the possible
existence of a statistically quasistationary approximate
solution valid at all times, allowing the PDF to modify
its shape in the process. A dynamically passive temper-
ature field, T'(x, t), undergoing turbulent convection and
molecular transport obeys the equation

%—f+v.VT=KV2T, 1)
where v(z, t) is a solenoidal fluctuating velocity field with
zero mean governed by the Navier-Stokes equations and
K is the thermal diffusivity. The present Letter is re-
stricted to statistically homogeneous velocity and tem-
perature fields. The time evolution equation for the flat-
ness factor, F(t) = ((T — (T)*) /o4, is
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where 02 = ((T —(T))?) is the fluctuating tempera-
ture variance, () = (K (VT)?) is the scalar fluctuation
dissipation rate, T’ = T — (T') is the temperature fluctu-
ation, and (T') is its constant expected value. Sinai and
Yakhot [2] observe that F' obtained from direct numer-
ical simulation (DNS) [5] reaches a constant value after
a period of relaxation. With this simple observation in
mind, they extrapolate this asymptotically constant be-
havior to all even order normalized moments and derive

a closed form of the limiting PDF for t — oco. How-
ever, results for F(t) and for the second term within the
parentheses in Eq. (2) from the numerical experiment are
shown in Fig. 1 and tend to display an approximate bal-
ance of the two terms on the right hand side of (2) over all
simulation times. It seems then plausible that a quasis-
tationary PDF, with time as a parameter, may correctly
approximate the scalar statistics time evolution. This
hypothesis is examined in what follows. The normalized
variable, X (z,t) = T’ (x,t) /or (t) , is governed by

%+v-VX=KV2X+(ex)X, (3)
where (ex)(t) = (K(VX)?) = (er)/o%. The fine-
grained PDF of X is formally

p="5x—X(z1)] (4)

and the PDF of X is P(x;t) = (). The P transport
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FIG. 1. Evolution of the flatness factor and of the term in
Ea. (2) (3/F)({T"%er)/o%{eT)), as a function of the dimen-
sionless time (u is the turbulence rms velocity and [ is the
turbulence integral length) obtained from DNS (run F2c [5]).
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equation can take two alternative forms [6],

2. ‘a% {® (0.t) + (ex) X P}, (52)
%’i = _% {% [E (x,t) P] + (ex)xP}, (5b)

where D (x,t) = (K (V?X)|X =x) and E(x,t) =
(K (VX)?|X = x) are the conditional diffusion and dis-
sipation rates, respectively. The expressions within the
curly brackets in Eqs. (5) are the probability fluxes in
the positive direction of the X axis. Identification of the
right hand sides of (5a) and (5b) yields

G * DO
Pt =g Bhea ) ©

X

where Cj is a normalization constant. Equation (6) can
be alternatively obtained averaging the expression for
V2p and invoking statistical homogeneity. A similar re-
lation for a statistical stationary process is derived aver-
aging %2?? [7]. Equation (6) implies no specific evolution
equation.

Multiplication of Eq. (5a) or (5b) by x2" and integra-
tion over x from x.,, to xas, the minimum and maximum
of x, respectively, leads to [2]

d(x2n> B <X2"‘_26x>
dt* ——27’1(2‘”—1)T

where dt* = (ex) (t) dt. The first term on the right hand
side of Eq. (7) makes (X?") decrease due to diffusive
damping, while the second one, which is only a formal
consequence of including or(t) in the definition of the
normalized variable X, increases (X?"). An approximate
balance between the two terms was assumed by Sinai and
Yakhot (2] after a relaxation time. While this balance
might be justified using order of magnitude estimates for
the velocity gradient [8] and for the scalar gradient, a
similar analysis for a scalar field is not a priori easy to
apply.

A stationary limit for Eq. (7) also implies that the
probability fluxes in Eqgs. (5a) and (5b) are independent
of x. In other words, the deflationary and inflationary
PDF transport terms in the budget of X fluctuations
must approximately be in balance. The dissipation of
T'(x,t) by molecular diffusion is offset by the simulta-
neous decay of or(t) and therefore T’ is appropriately
scaled with op. The characteristic equation in the x-t
plane corresponding to Eq. (5a) is [6]

+2n{X?"), (7)

% =D (x,t) + (ex) (&) x. (8)

While D (x,t) tends to bring any trajectory starting at
X = Xo for t = 0 into the neighborhood of x = 0 (i.e.,

T = (T)), the last term in Eq. (8) produces the opposite
effect. Quasistationary trajectories thus imply

D (Xv t) =- (€X) X (9)

which is the linear mean square estimation (LMSE), pre-
viously used in turbulent mixing PDF methods [6]. An-
other characteristic equation equivalent to Eq. (5a) can
be integrated resulting in

® (. t) + (ex) ) X] P (x;t)
= [D (x0,0) + {ex) (0) xo] P (x0;0) . (10)
Quasistationarity of Eq. (5b) leads to

POat) = g |- ex) O [ gEsa]. av

A conservation equation for E (x;t) can be readily de-
rived [9], containing among other terms those describing
the strain or rotation of scalar gradients by velocity gradi-
ents and the dissipation of E due to molecular diffusive
processes. Condensing these turbulent mixing mecha-
nisms into a proposed simple functional dependence of E
with x has proven not to be a trivial matter. From DNS
results [5] and experiments [10], a reasonable polynomial
approximation for the conditional dissipation is [2]

E(th) _ 1 +C2X2

(6x> - 1+Cz ’ (12)

should P (x;t) = P (—x;t). Substitution of (12) into (11)

and integration yields

_ Ci1(1+Cy) 1
(ex)

P(x;t) (13)

(1+ Cox?) T3

which is Sinai and Yakhot’s (2] limiting solution for
t — oo and Cy > 0. However, in the present context
C; and C; must be obtained as functions of the time,
t, from the normalization condition and moment con-
straints. DNS [5] and experiments [10] indicate that Cs
can be either positive or negative. For C > 0, P (x;t)
spans over x € (—oo0,+00) and for C2 < 0, P(x;t) is

only defined in x € (—,/—512-,+ L

-&)
Use of Eq. (7) with the quasistationary approximation
d(X*) /dt* = 0 and of the identity

(X%ex) = f E (x,t) x*P (x;t) dx (14)
allows us to express
_(xH-3
Cy = W)—-- (15)

Use of Egs. (13) and (14) easily yields
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FIG. 2. Comparison of PDFs given by Egs. (19)-(21)
(lines) with those obtained from DNS [11] (inert case: e,
tu/l = 0.00; x, tu/l = 0.48; +, tu/l = 0.94) at different
times.

E(y, t)/<ex>

FIG. 3. Comparison of the conditional scalar dissipation
rate given by Eq. (12) with C2 given by Eq. (15) (lines)
and that obtained from DNS [5] (run F2c: i, tu/l = 1.05; x,
tu/l = 2.11; gray O, tu/l = 3.25) at different times.
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. for C5 =0, and
& 2 (_02)3/2 ) (2 _ 50—2) (16) 3/2 T (1 + =L )
B il = 18
<€X) 1—-2C, \/7? T Cy 202 2 2C;
ex) " 1-2C yzr (~1+ 54;)
for C; <0, 2
c: -1 17 for C; > 0, where I'(a) is the gamma function of the
(ex)  Vorm (17) argument a. Relations (15) through (18), after setting
| (X*) =F, lead to
3/2 (&L Ty
Pt = = (3=E\ T E-1_\sF 1+————F“32>2 i (19)
X0 =7\ 2F A E 2F X
defined in x € (—\/-3%,+ %) for1 < F<3,to
__X2
P(xt) = —¢ —_ 20
(x; 1) Wer XP( 5 ) (20)
defined in x € (—o00,+00) for F = 3, and to
3F-3 -
2 (F-3 3/2F—1F(2F_6) F—3 ,\ 29
1) = 2 I 21
P(x;t) \/7?(2F> 3 __3_) (1+ 2Fx> (21)

defined in x € (—o0,+00) for F > 3. These PDFs in-
tegrate to 1, have zero odd-order moments, and satisfy
the constraints (X?) = 1 and (X%) = F. Figure 2
shows a comparison of the PDFs given by Egs. (19)-
(21) and those from DNS results [11]. The agreement
is remarkable and well within the numerical experiment
error. Figure 3 is a plot of Eq. (12) with C; given by
(15) and DNS data [5]. The coincidence is excellent in
spite of the poor quality of the DNS predictions near the
upper limit of x. An interesting question to answer in
the present context is to what extent initially asymmet-
ric scalar PDFs and/or the addition of a local chemical
source term may disrupt the statistical quasistationar-
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ity assumption. The latter, as examined in this paper,
should also be also investigated, for example, for scalar
gradient, velocity gradient, and vorticity.
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