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On-off intermittency is an aperiodic switching between static, or laminar, behavior and bursts of
oscillations. It has been recently investigated in a class of one-dimensional maps that are multiplica-
tively coupled to either random or chaotic signals. The addition of noise to the system results in a
fundamental change in the nature of the intermittency. The critical onset parameter changes dis-
continuously, and the distribution of the laminar phases is modified. These contrasts are examined
in terms of random walks.

PACS numbers: 05.45.+b, 02.50.—r, 05.40.+j

There are a large number of physical phenomena ex-
hibiting a peculiar behavior: the system is quiescent for
long periods followed by a burst of activity. This behav-
ior is persistent, and can be characterized by intermittent
switching of system variables. Examples are abundant
in nature and include cyclic starspot activity in astro-
physics, intermittent turbulent bursts occurring in oth-
erwise laminar pipe fiow in fiuid dynamics, irregular re-
versals of the Earth's magnetic field, and earthquakes.

A simple model of intermittency, so called on-off inter-
mittency, has been recently introduced by Platt, Spiegel,
and Tresser [1]. Some features of this type of intermit-
tency have been described by other authors [2]. However,
a surprising feature of this model is that the addition of
arbitrarily small amplitude "noise" to the model causes a
large discontinuous change in the critical onset threshold,
and modifies the statistical behavior of the intermittency.
In contrast to the paper introducing on-off intermittency

[1], this work makes quantitative predictions that should

be of interest to anybody who is trying to verify on-off

intermittency and its signatures experimentally.
The mechanism responsible for the on-off intermit-

tency model is a dynamic time-dependent forcing of a
bifurcation parameter of some simple dynamical system
through a bifurcation point. This contrasts with other
models such as Pomeau-Manneville intermittency types
I—III [3] and crisis-induced intermittency [4], for which

the parameters are static. Suppose that the slaved (or
dependent) system (A) displays on-ofF intermittency, and
the dynamics of the driving system (B) is independent
of the dynamics of the observable system (A). This skew

product structure [5] provides a clear picture of the dy-
namics involved and significantly simplifies the charac-
terization of on-off intermittency. In [6], Heagy, Platt,
and Hammel analyzed on-ofF intermittency in a class of
one-dimensional maps which are multiplicatively coupled
to either random or chaotic drivings. In this work the
conditions for the onset of intermittency are calculated
and an expression for the distribution of laminar phases
(probability of observing a laminar phase of given length)
is derived.

ax„y„, if ~yi & 0.25,
yn+x = & axn 3"", if y & 0.25,

—ar„+~~", if y & —0.25
(3)

The on-off model of intermittency allows the intermit-
tent signal to get arbitrarily close to a fixed point of the
observable slaved system (A) during the laminar phases.
This is quite unrealistic in real physical situations when

a large number of variables are involved and/or when ex-
ternal noise is present. In this situation the fixed point of
the dynamical system is actually only quasif'txed, namely,
the system is fiuctuating slightly in a small neighborhood
of the fixed point during the laminar phases. This can
be modeled by a small amplitude additive noise term in

system (A). Recently, Hughes and Proctor [7] investi-

gated a system of three-dimensional ordinary difFerential

equations and observed a striking difference in behavior
depending on the presence or absence of additive noise
terms. In this paper we will investigate the effects of
small amplitude additive noise on the statistical proper-
ties of on-off intermittency. The properties we examine
are the critical value of the bifurcation parameter for the
onset of intermittency and changes in the distribution of
the laminar phases as the amplitude of the noise is varied.

Following [6] we study maps of the form

y+i =a f(y )

with f(0) = 0, P [a g 0, and a is a bifurcation parame-
ter. Here, x„comes from a chaotic or a random process
and for simplicity we assume that x„has a uniform dis-

tribution in the interval (0, 1]. Without loss of generality
we can assume P]0 = 1. Expanding f(y) in a Taylor
series around y = 0 one obtains

y +i = ax (y + &(y.')).
The nonlinear terms serve only to keep the solution
bounded and are not relevant to the distribution of lam-

inar phases. In actual calculations we use a piecewise

linear map which has similar properties to a cubic map.
It is defined as
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FIG. 2. A typical signal y„versus time n displaying inter-
mittency at parameter a = 2.74.

FIG. 1. The first return map y„~i versus y„of Eq. (3) ss
the slope factor a2:„ is varied.

Figure 1 shows the first return map of (3) as the slope fac-
tor ax„sweeps its range. Note that for a & 4, the interval

[
—1, 1] is mapped into itself. Figure 2 shows a typical sig-

nal produced by system (3) just beyond the intermittency
threshold. To calculate the critical value of the bifurca-
tion parameter a = a„we note that the solution of (2)
keeping terms linear in y„ is y„= a"(g".

& zz)ye, and
thus the long term behavior of y„ is determined from the
asymptotic behavior of the product

P„=a" X) ~

~ 4 ~

j=0
(4)

Since In(Q". 0 xz. ) = Q".
0 Inz~ n(lnz), and

(In+) =
f& Inxdx = —1, P„~ (-, )". Thus, the critical

value of the bifurcation parameter for the onset of inter-
mittent behavior is a, = e = 2.71828... .

The distinguishing characteristic of the intermittent
signals such as those shown in Fig. 2 is the time between
successive "on" events. The distribution of the interevent
times, or /aminar phases, is easily measured (numerically
or experimentally), and can serve as a potential classifier
of the intermittent signals. Let A„be the probability
of obtaining a laminar phase of length exactly n. It is
proved in [6] that for system (2) at the onset of intermit-
tency, A„ is given by

y„+i = ax„(y„+O(yz )) + 6'„10 ". (6)

Here, 6'„ is a bounded noise process and v ) 0 scales

.01

.001

log plot of numerically obtained distributions of laminar
phases for various random and chaotic forcings z„with
uniform distribution in the interval (0, 1].

Computers have a finite numerical precision and some
care should be exercised in the numerical calculations
of the distribution of laminar phases. To reliably cal-
culate this statistic a very long time series is required,
and at the onset of intermittency, a, = e, we expect to
encounter laminar phases of arbitrarily long length. In
a typical computer realization at a = 2.72, signals reach
the limit of numerical precision of the computer near zero

( 10 ) in less than 10 iterations, and an underflow
condition then rounds off the solution exactly to the fixed
point solution of Eq. (2), y = 0. To avoid this problem a
small amplitude ( 10 sos) additive noise term was used
in the calculations of Fig. 3.

In an experimental setting, we cannot expect a sys-
tem to come arbitrarily close to a laminar fixed point
solution. Therefore, it is important to study a modifica-
tion of Eq. (2), which includes a small amplitude additive
noise term,

for uniformly distributed random driving. Thus, at the
onset of intermittency, the distribution of laminar phases
is a power law with exponent —&. In all cases we have
studied so far, the asymptotic distribution of laminar
phases at onset is well fit by a power law with exponent

This is true for both random and chaotic forcing.
Moreover, it is proved in [6] that the —

2 power law is
a universal feature of on-off intermittency at onset for a
large class of random driving cases. Figure 3 shows a log-
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FIG. 3. A numerically calculated log-log plot of the relative
probability of a laminar phase of length n versus n at a = 2.72.
A solid line represents white noise forcing, a dashed line is for
tent map forcing, and a dotted line is for 2x mod1 forcing. All
of the lines asymptotically have a slope of —3/2.
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FIG. 4. Typical behavior of the signal for added noise 10
The plot shows 1n ~y„] versus n at a = 2.2 and v = 5.

the noise amplitude. For simplicity we assume that
6„e [

—1, 1]. Note that the distribution function for b„
is irrelevant to the statistics of the intermittency and in
actual calculations 6„ is randomly set to either kl. The
quantity 10 " is a noise level or a noise Poor, it repre-
sents a boundary below which the dynamics is no longer
governed by the noise-free equation (2). We will examine
the effect of this modification of Eq. (2) on the critical
value of the bifurcation parameter and the distribution
of laminar phases.

First, let us examine the mechanism for the intermit-
tency for a ( e. For 0 & a & e the trajectory quickly
approaches the noise Hoor 10 and straddles it. Figure
4 shows a plot of the behavior of ln ]y„] vs n for a = 2.2.
Most of the time the trajectory remains in a narrow zone
around the noise Hoor with occasional exponential depar-
tures. Thus the mechanism for intermittency consists of
obtaining a "rare event" —a sequence of z„which are
large on average. This allows the product (4) to grow.

In fact, as shown below, the critical value of the bifur-
cation parameter is a, = 1 for any noise level 10 . The
effect of including additive random noise is equivalent to
inserting a zone of radius 10 " around the fixed point

y = 0 of Eq. (2). In this zone the dynamics is no longer
governed by the linearization in y„, but instead is gov-
erned by random noise. The abrupt change in the critical
onset value can be understood by examining the map (2)
in the log domain and by treating the added noise as an
elastic barrier at y = 10 [8]. In this approximation the
map (2) becomes an additive random walk with a barrier

Y„+i ——X„+Y„,

where Y = 1n]y„] and X„=ln(ux„) with Y & —v. In
the noise-free case the barrier is at Y = —oo. For this
case the onset value a = e is equivalent to a walk that
is unbiased: (X„)= 0. Moreover, for any distribution of
z c (0, 1], the critical parameter a = a, (onset value) is

determined by the condition (X„)= 0. Unbiased random
walks are recurrent [8]; this is the essential element in the
onset of intermittent behavior in the noise-free case. For
a & e in the noise-free case the random walk is biased

(nonrecurrent) and with probability one the walk goes to

FIG. 5. The numerically calculated log-log plots of the rel-
ative probability of a laminar phase of length n versus n at
a = 2.72, z = 10, and noise levels v = 3, 5, 10, and 300.

Y = -oo (y = 0).
For nonzero noise the walk is bounded below by Y =

—v and therefore for a & e the walk cannot proceed to
Y = —oo. I et w & 10 be a threshold above which the
signal y„ is considered to be "on." So long as a & 1 there
is a nonzero probability of starting from the noise level

and crossing the threshold. I.et z„=a2:„ in Eq. (6) and
let a ) 1 and t & 0 such that 1+ e & a. Define an on
event E~, which takes a solution all the way from the
noise Hoor to the threshold 7', by

&~ = 4(z )."=o'
I

z & [I + ~ u)). (8)

Then Q„s z„& (1+e) . Thus, we need to find N such
that (1+e) 10 ' & ~, namely,

log( ~p-- )N &
log(1+ e)

Thus

(10)

Therefore there is a nonzero probability for the event

(8). This event can occur in both the noise and noise-

free cases. In the noisy case, the event EN will necessarily
result in a return to the threshold since the starting point
is fixed. However, in the noise-free case, the starting
point will go to —oo on average. If we assume that the
noise 6„ is not correlated with the driving z„, we deduce
that a, = 1 for any noise level 10

We now turn our attention to the distribution of larn-

inar phases at the noise-free critical parameter, o,, = e.
This distribution changes as a function of noise level

10 . The distribution of laminar phases at a = 2.72 for

various noise levels is shown in a log-log plot in Fig. 5.
There are two distinguishing characteristics of these plots
from those of Fig. 3. The Brst is the appearance of "shoul-

ders" in the distribution; these shoulders are shifted to
larger values of n as the noise level decreases. These
shoulders exist for any noise level. The second is the

exponential falloE in the distribution for large n.
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FIG. 6. The scaling of the crossover regions, or shoulders,
for various noise levels. Diamonds represent the lengths 1V'

plotted against the value of [ln( „)] at a = 2.72, 7 = 10
and at various noise levels v.

For a given noise level a shoulder represents the
crossover time for noise effects to become significant. Let
this time be denoted by N' (a scaling relation for N' as
a function of noise amplitude is given below). For times
n (( N' the probability of starting at the threshold r and
reaching the noise floor is very small. In other words, the
system is "unaware" of the noise floor and the distribu-
tion of laminar phases is governed by the noise-free case,
namely, a —

&
power law. For times n && N' the major-

ity of paths between successive returns to the threshold
r will have encountered the noise floor at least once and
the system is no longer governed by (2). The proof of
the exponential decay law for n )) N' will be shown in
a later work.

From an experimental point of view it is important
to know the scaling of the position of the shoulders as
the noise level is varied. By the central limit theorem
Y„ in the random walk (7) has an asymptotic Gaussian
distribution with mean y,„=nlrb and variance o„=no,
where p and os are the mean and variance of the random
process (X„j. For uniform driving at onset (a = e),
ls = 0 and os = 1, giving p,„=0 and o2 = n. The
crossover time N' is taken to be the time for the half-
width of the distribution (as measured by o„/2) to equal
the distance between the threshold and the noise floor.
This yields the scaling relation

-2

Figure 6 shows the numerically determined crossover
time N' as a function of the quantity [ln(M „)]z for

several noise strengths. The times N' were taken to
be the points within the shoulders having slope —

2 in

Fig. 5. The crossover times agree well with the scaling
relation (11).

The examples shown here are not atypical, and the fol-
lowing items should be considered characteristic of on-off
intermittency for a wide variety of problems: (a) The
—

2 power law in the distribution of laminar phases at
onset of intermittency is a universal feature for random
drivings when there is no additive noise term. (b) The
introduction of additive noise forces a sudden change in
the critical onset bifurcation parameter. (c) The distri-
bution of laminar phases is independent of the threshold
~ in the noise-free case. For the "noisy" intermittency,
as the noise level is varied, the distribution of laminar
phases is dependent upon the ratio ~o' „.

In addition, we believe that a —
&

power law in the
distribution of laminar phases at onset of intermittency
holds for a large class of chaotic drivings when the driving
is completely independent of the responding system.
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