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It is shown that the mass difference between g' and pseudoscalar octet mesons can be calculated in

quenched lattice QCD with the aid of a variant wall source technique. The estimated mass difference in-
creases as the quark mass decreases, and its value extrapolated to the zero-quark-mass limit.
m j—mg =(750~ 40 MeV)2, is close to the value determined from experiment (850 MeV) ~. These re-
sults indicate that the long-standing U(l) problem could be solved in lattice QCD, with its essential part
being understood within the quenched approximation. We also comment on implications of our results
on spurious infrared divergences in quenched QCD.

PACS numbers: 12.38.Gc, 11.30.Rd, 14.40.Cs

While a substantial understanding has already been

achieved concerning the physics of liavor nonsinglet

mesons and baryons with the use of lattice QCD, very lit-

tle has so far been explored for the flavor singlet mesons.
The most important issue related to the latter is the U(1)
problem that the g' meson mass is much higher than
those of the other pseudoscalar octet members [1]. The
current view, based on the 1/N, expansion, ascribes the
origin of this mass splitting to iteration of virtual quark
loops in the g' propagator, each loop giving the factor

2

(I)
p +m

where mo =m„—m8 is the g'-octet mass-squared split-2 — 2

ting, and to the U(1) anomaly that is supposed to give a

large value to mp [2]. Whether the U(l) problem is

resolved along this view is clearly a problem posed on lat-
tice QCD.

The prime difficulty in exploring the flavor singlet sec-
tor with numerical lattice QCD stems from the fact that
a calculation of a disconnected two-quark-loop amplitude

projected onto the zero-momentum state is prohibitively
time consuming, should one attempt to carry it out in a
standard manner (for earlier attempts, see Refs. [3,4]).
We have shown in a previous work [5] that quite a gen-
eral class of N-point hadron Green's functions (projected
onto the zero-momentum state) is calculable with the use
of a variant version of the wall source technique [6]. In

this Letter we demonstrate that this technique can be
successfully applied to a calculation of the disconnected
two-quark-loop amplitude; we have obtained a large mass
of the g' meson, which is in a reasonable agreement with

experiment, albeit within the quenched approximation
and with a relatively large lattice spacing of a =0.14 fm

at P =6/g =5.7.
The method of calculation of the g'-octet mass splitting

comes from the observation that in the quenched approxi-
mation the ratio of the disconnected two-quark-loop am-

G(n, t) = g G(n, t;n", t"),
(n",t")

we form the expression

(3)

QTr[G(n, 0)ys]QTr[G t(n', t) ys] .
n'

(4)

This equals the two-quark-loop amplitude, with the two
quark loops starting and ending at the time slices t=0
and t, up to gauge-variant nonlocal terms which, howev-
er, must cancel out in the ensemble average. A very nice
feature of this trick is that it requires only a single quark
matrix inversion for each gauge configuration in order to
calculate the two-quark-loop amplitude for an arbitrary
time separation t, whereas in our previous work [3],
where we used the conventional point source, we had to
invert the quark matrix L T times on an L x T lattice.

We remark that there is no a priori guarantee that this
method yields a good signal for the propagator, since
there are O((L L T) ) nonlocal noise terms relative to
O((L ) ) local gauge-invariant ones in (4), and hence

plitude to the connected single-quark-loop amplitude for
the ri' meson propagator, each projected onto the zero-
momentum state, should behave as

(ri'(t) ri'(0))21 p mp'
R(t) = (,( ),( ))

= i+const

in Euclidean space-time. This formula can be proven by
truncating the iteration of the virtual quark loops in the
ri' propagator, each loop giving the factor of (1) at the
two-quark-loop level in agreement with the quenched ap-
proximation. The task of lattice QCD then is to extract
mo directly from the ratio without resorting to any
heuristic argument using the U(1) anomaly.

The two-quark-loop amplitude needed in (2) is evalu-
ated as follows. We solve for the quark propagator with
unit source at every space time site w-ithout gauge ftxing
With this quark propagator,
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FIG. 1. Two- and single-quark-loop amplitudes for the g'

propagator at P 5.7 and K =0.1665 on a 123x20 lattice.
FIG. 2. Ratio R(t) of two- and single-quark-loop contribu-

tions to the g propagator plotted in Fig. 1. Solid line is the
linear fit over 4~ t ~8.

the signal to noise ratio may well be O(l/T). However,
in practice we obtain a good signal with reasonable statis-
tics as we shall show below.

Our calculations are made with the Wilson quark ac-
tion at P =5.7 with four values of the hopping parameter,
K=0.164, 0.165, and 0.1665 on a 12 X20 lattice and

K =0.168 on a 16 x20 lattice. For the first three values

of K, 240-300 gauge configurations, each 1000 pseudo
heat-bath sweeps apart, are used to evaluate the quark
propagator, and 43 configurations are employed for the
largest K. We encountered three exceptional config-
urations in the last case. They are excluded from the
average, which might induce some bias towards small

quark masses. Errors are estimated by the jackknife pro-
cedure with 5 configurations as the bin size.

We present in Fig. 1 the two-quark-loop amplitude
(circles) of the rt' propagator for the case of K =0.1665,
together with the single-quark-loop amplitude (triangles)
for comparison. We observe a good signal for the two-

quark-loop amplitude, which demonstrates the efkc-
tiveness of our method for calculating disconnected con-
tributions.

The ratio R(t) of the two amplitudes is shown in Fig.
2. A good linear increase with t for the range of t =1-8
is seen. While a constant is generally expected in the ra-

tio, the figure shows that it is negligibly small. We then
extract mo by fitting the data to the linear form (2)

where the value of ms is taken from a standard analysis
of the pion propagator, i.e., the single-quark-loop arnpli-
tude in the denominator of (2). The fitting range is

chosen to be 3-4~ t ~ 7-8, depending on the quality of
the data, where the cutofl' at small t is made in order to
avoid a possible contamination from higher excited states
in agreement with the analysis for the pion propagator
that indeed exhibits such a contribution. We set the con-
stant term to be zero since its inclusion does not modify
the resulting fit, simply increasing errors of the fitted
values of mo. For the case of K=0.168 only t 4-6 are
used for the fit, because of the poor quality of our data.

The results for mo are plotted in Fig. 3 as a function of
the conventionally defined quark mass mp = (I/K
—1/K, )/2 using K, =0.1694 [7j. The numerical values

are given in Table l. Here we multiply mo by JNI =J3
to obtain a physical value for the case of three flavors as
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TABLE I. Values of mp multiplied by QNf =&3 in lattice
units in quenched lattice QCD at P =5.7 with the Wilson quark
action.
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FIG. 3. mp multiplied by JNg =J3 as a function of
m~ =(1/K 1/K, )/2. Left ordinate and bottom abscissa are in

lattice units, while right ordinate and top abscissa are in physi-
cal units using a ' =1.45 GeY. Solid line is a linear fit which
extrapolates to mp =0.518(25) [751(39) MeVJ at mp =0.
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is clear from (2), since the simulation is carried out for a
single flavor. We observe a very good linear increase of
nip as mq decreases towards mq =0, at least down to
ntq = 0 0.25 (K =0.168), which corresponds to m /mz
=0.42. If we evaluate the value of mp at the vanishing
quark mass by a linear extrapolation, we find
m0=0. 518(25) or mo=751(39) MeV in physical units
using a '=1.45(3) GeV estimated from the p meson
mass data of Ref. [7] extrapolated to K, . Let us em-
phasize that an increase of mp towards the chiral limit is
in marked contrast to other hadron masses, which always
decrease as mq~ 0, e.g. , m, ~ mq, revealing the unusual
nature of the U(1) problem.

The value we obtained may be compared with the
empirically estimated mass difference, mp =m~~+ m~—2m' = (852 MeV), using the Witten-Veneziano rela-
tion [2], or a more naive value,

mo =m„~ —(4m„'+3m.'+m„')/8 = (866 MeV)'

ignoring a small mixing between g and g'. While a pre-
cise agreement is not achieved, the result is quite en-

couraging. We may conclude that the g' mass is under-
stood within quenched QCD at least approximately;
dynamical quarks would p)ay a relatively minor role in

producing a large g'-octet mass splitting.
Another comparison is to directly test the U(l ) Ward

identity relation derived by Witten and Veneziano,

mo =2Nfg/f„, (5)

with g the topological susceptibility in the pure gauge
theory. We calculate g by applying the cooling method

[8] to our 300 pure gauge configurations on a 12 X 20
1 at tice with 25 cooling sweeps. The result is g
=4.76(36) X 10 . Using f,(K =K„)=0.0676(24) ob-

tained from the same gauge configurations with the aid of
the improved perturbation correction [9], we obtain
mo= I 146(67) MeV with the use of (5) for Nf =3. This
value seems higher than our result and also than the
empirical value. The disagreement might be ascribed to
the chiral symmetry breaking of the Wilson quark action
which introduces extra terms in the U(l) Ward identity.

We also note that the authors of Ref. [41 obtained
mo=920 MeV [10] at m, /m~=0. 7l and 570 MeV at
m, /m~=0. 34 with a '=1.81 GeV from an exponential
fit to the point-to-point g' propagator using 10 configu-
rations generated with a nonstandard gauge action on an

8 X161attice.
Let us remark on the obvious origins of systematic er-

rors in our result: (i) Our calculation is made at p=5.7

with a relatively large lattice spacing a = 0.14 fm to keep
the physical lattice size large enough while retaining the
computational demand to a modest amount with a lattice
ot' size (12 X20)-(16 x20); this coupling is still not in

the region where scaling of physical quantities is expect-
ed; (ii) the calculation is made only up to K=0.168; the

possibility is not excluded that mp increases faster than
the linear behavior in m~ close to the chiral limit; (iii) the
error may also arise from the neglect of dynamical
quarks.

Our final consideration concerns implications of our re-
sult on the importance of the spurious infrared diver-
gences that possibly appear in the chiral limit in the
quenched approximation [11]. These divergences origi-
nate from the double pole mo/(p +m, ) in the discon-
nected two-quark-loop amplitude of the g' propagator.
The one-loop order in chiral perturbation theory, for ex-
ample, the pion mass is given by [I I]

(6)

1 1 mp
Sap =

1536m f,m„
(7)

to the s-wave scattering length, which diverges as
m 0. With our result for mp we find that the
coeScient of the logarithm in (6) has a magnitude
6-0.1 at m,/m~-0. 5. Quenched pion mass data in the
region m,/m~+ 0.5 do not show evidence of the logarithm
with such a small coeflicient [13]. It is intriguing to note,
however, that a recent result [14] with Kogut-Susskind
quarks at p=6.0 for much smaller quarks masses corre-
sponding to 0.5+m,/m~+0. 3 show a deviation from a
linear behavior m, ~m~ and can be fitted with (6) with
6-0.15, a value roughly consistent with that we obtained
for K=0.168 (m,/m~-0. 4). For the scattering length
(7) we expect a much smaller correction Dao/ao
-0.003 at m„/m~-0. 5 where ao is the current algebra
prediction for the 1=0 scattering length ao =7m,j
32zf, .

In conclusion, we have shown that the mass difference
between g' and pseudoscalar octet mesons can be calcu-
lated with the use of the variant wall source method pro-
posed in our previous publication, albeit within the
quenched approximation. The estimated mass difference
increases as mq decreases, and its value extrapolated to
mq =0 is close to that determined experimentally, indi-

cating that the long-standing U(1) problem would be
solved in lattice QCD and that its essential part is under-
stood within the quenched approximation.

Numerical calculations for the present work have been
carried out on HITAC S820/80 at KEK. This work is

supported in part by the Grants-in-Aid of the Ministry of
Education (No. 03640270, No. 05NP0601, No.
05640325, and No. 05640363).

where 6'=mo/8z /Vff, and A is a cutoff of chiral pertur-
bation theory. For the z nscat-tering amplitude [12], the
one-loop diagram formed by the two double-pole propa-
gators yields a divergent imaginary part at threshold in

the s chanel, and in the t channel gives a contribution of
the form
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