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Energy Spectrum of Homogeneous and Isotropic Turbulence in Far Dissipation Range
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The Kolmogorov relation for the third order structure function is used to derive the energy
spectrum in the far dissipation range (k ~ oo). With no unspecified constants and methods from

matched asymptotic expansions, a uniformly valid form for the inertial through the dissipative
ranges is obtained. An analogous energy spectrum is presented. This is compared with the results
of physical and numerical experiments on the energy spectra E(k) The. theoretical predictions are

found to deviate by not more than a few percent from data in the entire range of wave numbers
where the energy spectrum E(k) varies by more than 30 orders of magnitude.

PACS numbers: 47.27.Gs

In this Letter we address the problem of the energy
spectrum E(k) of fully developed turbulent How in the
far dissipation range (k -+ oo). It is generally accepted
that the full energy spectrum consists of three dynami-
cally different ranges. At the largest scales l = L, where
L is the size of the system, the dynamics are not uni-
versal and depend on the details of the How: geometry,
instability mechanisms leading to the turbulence produc-
tion, external fields, etc. In the inertial range of scales
Ld « l « L strong nonlinearity leads to approximately
universal behavior independent of both L and molecular
viscosity v, lg being the viscous scale. This is the range
in which scaling relations hold, and velocity Huctuations
can be characterized by the Kolmogorov-like spectrum.
In the viscosity dominated interval I « ld the intensity of
the velocity Huctuations rapidly decreases with the wave

number k. This region inherits a form of universality
from the inertial range. A rigorous mathematical esti-
mate shows that E(k) = O(e '"), with the unspecified
constant c [1]. Studies have suggested a prefactor of ks

but give no first principles determination of the expo-
nential constant [2—4]. Our result completely specifies all

constants and relates the prefactor to the inertial range.
In addition, the inertial and far dissipative ranges emerge
from a single universal spectrum.

To set the stage for the analysis of this range, consider
a flow stirred by a force f having nonzero Fourier com-

ponents f(k) in the interval 0 & k = ko = 1/I. In the
case of statistically steady How the following relation can
be derived [5]:

4 6 4 BS~
Ss = ——ex+ — y hub, fdy+6v

5 x4, Bz

where Sn = (Ku)", b,u = u(X + x) —u(X), and 4f
= f(X+x) —f(X). Here u and f represent the z com-
ponents of the velocity and force fields, respectively, and
x is the displacement in the x direction.

At scales l « L this relation simplifies to [6—8],

4 dSz
Ss = [u(X) —u(X + z)]s = —-ex + 6v

5 x (2)

Expressions (1) and (2) are consequences of the
Navier-Stokes equations for an incompressible Huid

where the dissipation rate e is defined as

-2222(24, 2 + 22, ,;)2 (= 1521(822/()z) 2) .
From the smoothness of derivatives of the Navier-

Stokes equations it can be reasonably argued that S„ is
smooth, if not analytic, at the origin. Thus S„=O(x")
for small z and hence (2) yields

S2 = z'+ O(x'),

(5)

where
OO

U(k) = — e '"*U(x)dx.
2' QQ

A Fourier transformation using only the exparbsion (3)
leaves us with delta functions and derivatives of it in

wave-number space. Correctly interpreted, this states
that the principal support of E(k) is at the o»gin to
within the approximations which have been used. The

where parity considerations dictate the error estimate.
The energy spectrum can be directly related to the

second order structure function by observing that

S2 = [22(X) —22(X + z)] = 2 (222
—22(X}22(X+ z))

= 2[U(0) —U(x)], (4)

where uoz/2 is the mean eneryy and U(z) defines the two-

point velocity correlation function, which is seen to be
even in x and vanishes as ~x

~ f oo. Then as is well known
the thr"" dimensional energy spectrum E is expressible
in terms of the one-dimensional spectrum by
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limit, k ~ oo, in which we are interested is indistinguish-
able from zero in this approximation. Physically what is
missing is the nonlinear interaction between modes which
is the only source supplying energy to the small scales
where it is dissipated by viscous mechanisms. Without
this term there is no way to balance the viscosity. Thus,
the problem of the dissipation range spectrum is a strong
coupling problem, not accessible to simple perturbation
expansions in powers of the nonlinearity. This was re-
alized a long time ago by Kraichnan [2], Orszag [3], and
Kuzmin and Patashinskii [4] who developed the low-order
renormalized perturbation expansion to attack this prob-
lem.

We now use relation (2) to extend the expansion so as
to include terms which arise from nonlinear interactions.

3/2
For this purpose we recall that (Bu/Bx) s = S(Bu/Bx) z

defines the parameter of skewness, S. It then follows that
in the limit z -+ 0

) 3/2
Sg = —S ( i

z~ +0(zs),

and from this that

S e ) s/z 46vSz = ——
~

x +-sz +O(x ).
4 15v& 5

In deriving Eq. (8) the O(zs) contribution coming from
the second term on the right side of (1) has been ne-
glected as small. It is easy to show that when kpz (( 1
this contribution is O(kpsxs). We illustrate this point in
an example of a flow stirred by a white, in-time, random
Gaussian force defined by the correlation function

2 2

f;(k)f, (k') = ~
' 6(k+ k')6(t —t').

In physical space this yields the exact relation that

2
hub, f = -s(1 —coskpz).

3
If this is substituted into (1) then

y b,ub f dy - —ezO(kpx ),
1 4 1 22

X 0

which is small compared to (b,u)s - S(s/15v) ~zs when
kp ~ 0 for v = O(1) and e = O(1).

To normalize the above results we fix the viscous scale
to be the Kolmogorov length lg = g = (vs/e) ~/ and the
integral scale by L = ups/t. . We can then write

15S2 15S2 z 1
~2/3 2/3 ~1/2~1/2 a2

where x = x/g and a2 = 8(15)s/z/5S. In a more general
case when ko is finite it follows from the relations derived
above that

with p = (rI/L) / /(30) / . The normalized energy spec-
trum is given by

Z=k'
i

-' C(k) ~,
Bk (k Bk

where

-iA:xC(k) = — e '"*C(x)&z (13)2x DQ

and F now refers to the normalized spectrum.
The singularity structure of C(z) in the complex x

plane determines the behavior of C(k) for ~k~ f oo, since
the evaluation of (13) can proceed by distorting the in-
tegration path in the complex x plane. We observe that
the series for C(z) (11) appears as an alternating sum.
Although only three terms are present in (11), one may
demonstrate that this is rigorously true. From this we
may also prove that the circle of convergence is limited
by a singularity on the negative real axis of zz. This sug-
gests that the complex zz plane be mapped by the Euler
transformation

x'
QJ = 2) X&+X 1 —QJ

where the constant n ) 0 is still to be determined. Thus,
as a function of to, F has a convergent power series about
the origin, given by

2
o!QJ 1

~(
o!'w

)~ O( s)
1 —m az I, 1 —m/

0! 5)= a~ + o.w —
z + O(m ). (14)

If we take a = o.z/az, i.e., a2 = a, then F = o;m+ O(ut )
so that the second order term in (14) is eliminated from
the series.

Thus, it follows that

The relation (10), derived for the case of turbulent flow

stirred by white-in-time random force, is important for
our understanding of finite Reynolds number flows, when

kpr/ is not extremely small. It follows from (10) that for

a typical value of S 0.5, the ratio kpr/ = O(Re l)
in the Kolmogorov turbulence must be small for the pa-
rameter a to reach its asymptotic value. It will be clear
below that a determines the form of the exponential in
the dissipation range energy spectrum. Thus, even small
finite Reynolds number corrections to the value of a are
important in the limit k -+ oo.

In the above normalization the correlation function is
given by

C(z) = &/&o = 1 —&'F(x)

=1 —0 I
z ——I+O(x ),

-s

58 15
8 84

15 ~+ —(kpg) . (10)
F "+*- '(i"+=)) (15)
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a form which suggests poles at x = +ia. In this form the
expansion has the appearance of a development in Pade
approximants.

Next we reason that for x = O(a) the function Ii (x) is
well defined for x which is real. For x large we are phys-
ically in the inertial range and Kolmogorov's argument,
used here as an assumption, yields

2 -2/3
Q/3 Q/3 )

where K is the Kolmogorov constant. (Our deliberations
extend to more general power laws and we discuss this
later. ) Arguments based on matched asymptotics suggest
that the above expansion, say (14), can be regarded as
the inner expansion of

5 I—

I

)
A

0 I—
hQ
0

I I I
[

I I
[

I

I

24/s sp2

3s~2q~r(2/3)
(19)

kiI and K„ is the modified Bessel function of
order v.

On applying (12) to (18) we find

E(II;) = 5~'~sK+(~) + ~+K+(~), (20)

where (20) is valid for large II,. The energy spectrum as
given by (20) supplies a uniformly valid form covering the
two universal ranges, viz. , the inertial and far dissipative
ranges.

In the limit of relatively small e the expression (20)
gives the Kolmogorov spectrum. When ~ ~ oo,

E(~) s
(~s+p~&)e ", (2i)

with P = SSS + 2i(2SS)2.

Comparisons of the predictions based on (20) with ex-
perimental data are presented in Figs. 1—4. Figure 1
shows the experimental data on the one-dimensional en-
ergy spectrum Ei(k/k„), obtained for different turbulent
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F=
2- Z/3' (16)

2cL~

To the present order this yields
At Q

C(z) =1 —P (17)
1+ ~,22

The Fourier transform of this expression also gives rise
to distributions at the origin. This, however, is a con-
sequence of the neglect of the integral scales in (17). In
order to consider the spectrum for ]k~ $ oo and to re-
strict attention to the inertial and dissipative ranges it is
appropriate to neglect distributions at the origin and we
write

2 e i%I dg-
C(k) P gk22~, + s -22&s

~ 2G

= A[Ir, Kiiys(II;) + z Ks]s(z)],
where

—2

l,og [I /I, ]

FIG. 1. Fit of experimental data (as compiled in Ref. [9]).

fiows (compilation due to She [9]). The characteristic
wave number kz corresponds to the maximum of the func-
tion k2E(k). The experimental data were fitted [9] using
the function E,(k) = (1.14k ~ + 0.626k i)exp( —0.57k).
The ratio of the theoretically derived spectrum (20) to
the experimental fit, E,(k) shown in Fig. 1, is shown
in Fig. 2. As is seen, the theoretical prediction given
by (20) deviates from the fitting function in the entire
interval 10 4 ( k/k„( 10 by not more than a few per-
cent. The largest deviation (= 1070) occurs in the dissi-
pation range, k/k„= 10, where the experimental scatter
is rather large.

In Fig. 3 the energy spectrum obtained in numeri-
cal simulations by Chen et aL [10] is shown. This low
Reynolds number fiow is remarkable due to the unusually
large dissipation range, accurately resolved in this state-
of-the-art numerical experiment ( 256s Fourier modes).
The measured energy spectrum varied from E(k) - 1 at
the low wave-number part of the spectrum to E(k)—
10 40 at the ultraviolet cutoff k - 100, thus covering

5

0. 95

0. 9

FIG. 2. Ratio of (20) to experimental fit used in Fig. 1
[ratio vs log(k/k„)].
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FIG. 3. Numerical spectrum from Ref. [10). 20 40 60 80 100

approximately 40 orders of magnitude of E(k) variation.
The flow was stirred in the small wave-number interval
1 & Is & 3. Since the Kolmogorov scale in this experiment
is kd = 8.7, parameter l'seri is not small and has to be
taken into account in the evaluation of the constant a in
(10). Substituting kc = 2 into (10) leads to a = 7. The
ratio of the theoretical prediction (20) with a = 6.1 and
the results of the numerical simulation are presented in
Fig. 4. As we see, the relative error does not exceed more
than 1QFO in the entire interval 10 & A, & 100, where the
energy spectrum varies by - 35 orders of magnitude.

The relation (16) is based on the assumption that the
inertial range is characterized by the Kolmogorov spec-
trum. However, if a more general power law Sq oc x" is
assumed then the above analysis gives, instead of (16),
Ii = xz/[I + &

„(-*)2] ~ . In this case also, all formulas
can be evaluated in terms of the corresponding modified
Bessel functions. In view of the close agreement that we
have found using v = 2/3 we have not deemed it neces-
sary to search for a non-Kolmogorov value of v to better
fit the data. (Only the exponents in the prefactor are
modified in this case. )

The results derived in this work underline the impor-
tance of finite Reynolds number effects in the determi-
nation of the scaling exponents. Indeed, in the not-
too-large Reynolds number flows, the slope of E(k) in
the inertial range is sensitive to the magnitudes of the
derivative skewness S, cutoffs kg and kc, and parameter
a given by expression (10). It is easy to see that the
value of the exponents, obtained without accurate analy-
sis of corrections to scaling coming from the Bessel func-
tions in (20), can be erroneous. These effects might be
especially crucial in the evaluation of such fine features

FIG. 4. Ratio of (20) to numerical spectrum shown in Fig.
3 (ratio vs k).

like intermittency exponents in the high-order moments
S„(x).There, the magnitudes of the corresponding cut-
offs (Itd„, kc„), high-order derivative skewnesses S", and
other parameters of the scaling functions can vary with
order n, thus leading to apparent incorrect scaling expo-
nents. Only by using more sophisticated means of data
processing, which include scaling functions, can one ac-
curately determine the scaling exponents of the higher-
order moments of structure functions. This resembles the
situation in the theory of critical phenomena: Only after
taking into account correction to scaling does an unam-
biguous determination of the critical exponents become
possible.
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