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Conservation of Angular Momentum in the Problem of Tunneling of the Magnetic Moment

Eugene M. Chudnovsky

Physics Department, City University of New York Lehman CollegeB, edford Park Boulevard West
Bronx, Ne~ York 10468-1589

(Received 5 January 1994)

Tunneling of the magnetic moment has some unique features not encountered in other tunneling prob-
lems. The conservation of energy and angular momentum prohibits transitions between degenerate mag-
netic states in a free single-domain magnetic particle. For such transitions to occur, the particle must be
firmly coupled with a large solid matrix that absorbs the change in the angular momentum. We show
that the contribution of this effect to the tunneling rate is determined by the ratio of the magnetic an-
isotropy energy to the shear modulus of the matrix. An experiment is suggested that can test this predic-
tion.
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If the position of the particle was fixed, that is, if L was
strictly zero, the ground state would be degenerate with
respect to the transformation M —M, with the equi-
librium orientation of M, relative to the particle, being
determined by the magnetic anisotropy. For a free parti-
cle, however, (2) is only degenerate with respect to the
simultaneous change of sign of M and L. Together with
(I), this means that the transition between M and —M
states cannot occur in a free nonrotating particle. Such a
transition would cause the rotation in the final state with

Tunneling of the magnetic moment between equilibri-
um orientations in magnets has been the subject of inten-

sive recent theoretical and experimental studies [I]. In

these studies one important aspect of the problem has

been ignored. The macroscopic magnetic moment M is

due to the ordering of electron spins, or orbital momenta,
or combined. Consequently, it has an angular momen-

tum associated with it, y 'M (y=ge/2mc being the

gyromagnetic ratio). For that reason, a freely suspended

body, on being magnetized, begins to rotate (the Ein-
stein-de Haas effect). This suggests that any spontane-
ous transition of M between equilibrium magnetic states
is only possible if the system finds the way to compensate
the corresponding change in the angular momentum; oth-
erwise, the transition is strictly prohibited by the conser-
vation law. Consider a free single-domain magnetic par-
ticle in the absence of the magnetic field, which is charac-
terized by the magnetic moment M and the mechanical
angular momentum L. As usual, we shall assume that M
is formed by the strong exchange interaction and can only
change its orientation, but not the absolute value. The
dynamics of L and M must preserve the total angular
momentum,

L+ y 'M =const.

On the other hand, the symmetry with respect to the time
reversal dictates that the free energy of the particle is the
even form of vectors M and L,

L=2y 'M and the kinetic energy E, L /21, I being

the moment of inertia of the particle. For a nanorneter
size magnetic particle, E, would be of the order of a few

kelvin (or even greater), that is, much higher than any
uncertainty in the energy of the particle at low tempera-
ture. To compensate this energy change, the particle
should have been prepared in a metastable magnetic
state, by, e.g. , placing it in a sufficiently large magnetic
field. If this is not the case, Eqs. (I) and (2) dictate that
the free particle can change the direction of its magnetic
moment only if it has zero total angular momentum, that
is, in the state with L = —

y 'M. Any rotation of M will

then be accompanied by the rotation of L such that
L+ y 'M =0. Note that if M is of spin origin, this con-
dition becomes L+S=O, which can be satisfied only for
an integer total spin of the magnetic particle, but not for
a half-integer spin. This is in accordance with the Kra-
mers theorem and its recent path-integral derivation

[2,3], which say that the magnetic moment should be
frozen in a half-integer-spin particle.

Consider now a small magnetic particle which is im-

bedded in a large nonmagnetic absolutely rigid solid ma-
trix. "Absolutely rigid" means infinite clast&c moduli;
that is, the matrix can only move as a whole, but is not
allowed to develop any local elastic deformations. Again,
the exact degeneracy of the ground state with respect to
the transformation M —M requires zero total angular
momentum of the system, that is, the mechanical rotation
with the angular momentum L = —

y 'M. However, the
kinetic energy associated with this rotation is now
E„=L /2I, which is inversely proportional to the fifth

power of the size of the matrix (I being the moment of
inertia of the matrix). Thus, in the limit of an infinite
stationary matrix, the magnetic degeneracy of the ground
state becomes precise, and spontaneous transitions be-
tween M and —M states can satisfy conservation of en-

ergy and angular momentum. In fact, the physical limi-
tation on the minimal size of the matrix is that E, is

negligible compared to the tunneling splitting of the
ground-state energy level. One may notice the diA'erence

from the conventional double-well problem (e.g. , coherent
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tunneling between degenerate configurations of ammonia
molecule), where the size of the system is irrelevant.

Let us finally turn to the physical case of a particle im-

bedded in a large stationary solid matrix that has finite

elastic moduli. The imaginary-time dynamics of the sys-

tem now involves the elastic twist in the matrix, produced

by the rotational recoil due to tunneling of M. Equation
(I) tells us that to conserve the total angular momentum

tunneling from M to —M must be accompanied by the
creation of 2M/yh transversal phonons of spin 1. How-

ever, the energy of these phonons in the final state of an

infinite system will be zero, so that no real-time excita-
tions will be created. One should note the direct analogy
with the zero-phonon line in Mossbauer spectroscopy.
This makes tunneling between degenerate magnetic states
(macroscopic quantum coherence) theoretically possible.
A more general case (which also should be easier to
detect) is quantum decay of a metastable magnetic state,
created, e.g. , in a small particle by the external magnetic
field [4]. As we will see, the balance of the total angular
momentum is important for this problem as well. It
should also enter the problem of tunneling of a domain

wall [5,6]. In all these problems, the ability of the atomic

background to absorb the angular momentum produced

by the change. in magnetization depends on the shear

modulus of the material. One should expect that the

cases of zero and infinite shear modulus refiect, respec-

tively, our cases of a free particle and a particle in an ab-

solutely rigid matrix. In what follows we will demon-

strate this explicitly by calculating the effect of the rota-

tional recoil on the tunneling rate.
The Lagrangian of the system consists of three parts,

L =Em+/, +L;„,, (3)

~here L is associated with the dynamics of the magnet-

ic moment, L, is the Lagrangian of the elastic matrix,
and X gi describes the interaction between M and elastic
deformations. The magnetic Lagrangian has the form

[1-4]
= y 'Mp(cos8 —1) —E,(8,$)+M. H, (4)

where K& and E[[ are volume-independent anisotropy
constants. This form of the anisotropy corresponds to the
V-Z easy plane and the Z easy axis in that plane. The
second term in Eq. (5) creates two equilibrium orienta-
tions of M (parallel and antiparallel to the Z axis) and

where 8(r, r) and p(r, t) are spherical coordinates of a

fixed-length vector M, E,(8,&) is the energy of the mag-
netic anisotropy (in which we absorb the magnetic dipole

energy as well), and H is the magnetic field. Note that
E is proportional to the volume of the particle, V,

through M, E, ~ V. The simplest choice of E, that exhib-
its tunneling and at the same time provides a reasonable
description of the anisotropy of a fine particle is

the energy barrier between them. The first term is re-

sponsible for the nonconservation of M„ that is, its nor]-

commutation with the Hamiltonian in the quantum prob-
lem. The tunneling then occurs between up and down

orientations of the magnetic moment.
For further consideration, it is convenient to introduce

the magnetization of the system,

M(t)/V, for r 6 &.
m r, r

0, otherwise.

We will regard the diameter of the particle, d, as the

smallest size in the problem. This is justified by the fact
that any excitations (magnons, phonons, etc. ) inside the

particle cost too much energy to contribute to tunneling.
Our treatment of the rotational recoil should, therefore,
equally apply to the case of an atom having a very large
magnetic moment M. In this sense, Eq. (6) is equivalent

to

m(r, i) =M(r)b(r).
The anisotropy of the elastic properties of the system is

irrelevant for our conclusions. For that reason we will

use the isotropic elastic theory with the Lagrangian

I pMi p MIj M
1

where p is the density of the system, u(r, t) is the dis-

placement field„u;~ = —,
' (t);u~+t)~u;) is the strain tensor,

and p and A+ 3 p are the shear modulus and the

compression modulus, respectively. Their relation to ve-

locities of transversal and longitudinal phonons is

=(p/p) ' and cI = [(X+2@)/p] ' . For a particle imbed-

ded in a matrix, the density and the elastic moduli of the

system, generally speaking, change at the surface of the

particle. This effect becomes irrelevant, however, in the

limit of small d, when it is su%cient to treat the magnetic
moment of the particle as a 8 source of the elastic twist in

the matrix (see below). We shall assume, therefore, that

all coefficients in Eq. (8) refer to the matrix.
Finally, we need the form of the interaction between

magnetic and elastic degrees of freedom. Based upon

symmetry arguments, the magnetostriction in ferrornag-

nets is approximated by the interaction a;kf Pl'PlI, MI

where a is the tensor of magnetoelastic coeScients. In

connection with the problem of spin tunneling, this form

of coupling has been studied in Ref. [7] (see also Ret'.

[8]). It was demonstrated that its contribution to the

tunneling exponent disappears in the limit of d — 0. For
nanometer size particles its relative contribution is of the

order of 10 -10 . This result should be taken with

caution, however, since the form of the interaction used

to derive it only applies to low frequencies and large

wavelengths. As we will see, in the limit of small d, the

main effect comes from the linear coupling between M

and u which is demanded by the dynamics of' the angular

momentum. A nice property of this coupling is that it
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can be written exactly, without any phenomenological
constants. According to Eq. (I), the rotation of M in a
small particle must produce the mechanical torque in the
matrix,

T(r, t) = —y-'M(t)b(r) .

On the other hand, the local twist in the material is

e(r, t) = —,
' Vxu.

(9)

(io)

d rT %= — d rm (Vxu). (I I)2y"
The equivalent form, which differs from (I I) by a total
time derivative, is

X;„,=y 'J d rm 4, (i 2)

which simply reflects the fact that rotation is equivalent
to the magnetic field,

This gives the following contribution to the Lagrangian of
the system:

h=y (i 3)

fO

J D [uj D {Mj exp ——„dr XE(u, M) (i4)

over u and M configurations which lead from the initial
to the final state. Here LE is the imaginary-time version
of the total Lagrangian (3). Since we are only interested
in the magnetic characteristics of the initial and final
states, we should first integrate over u. This is easy be-
cause the integral over u,

The boundary term due to the total time derivative can,
in principle, be important in the quantum Lagrangian, as
it generates an additional phase of the tunneling ampli-
tude. However, for an infinitely )arge matrix, this term is

zero because no elastic twist occurs in the final state.
Note that u/2y plays the role of the vector potential in

our problem. Based upon this fact, one may try to con-
struct a Chem-Simons term in the Lagrangian. This pos-
sibility will be studied elsewhere.

To obtain the tunneling rate, one must evaluate the
imaginary-time path integral,

1 ~ ~
3 i 1

D[ujexp —— dr d r m (V&u)+ —pu; +pu; + uk',—�& ~ 2y 2
' " 2

(is)

is Gaussian (dot now means derivative on r). This in-

tegration leads to the nonlocal in r, Caldeira-Leggett
type, action [9] for M. We will simplify the calculation
by assuming that the size of the particIe, d, is small com-
pared to c,/tot, where to; is the characteristic frequency of
the instanton that carries out tunneling. This condition is
in accordance with our general line that declares d the
smallest scale in the problem. Under this condition, the
inertial term pu /2 in Eq. (IS) can be neglected, and the
standard integration over u gives the following expression
for the effective Euclidean magnetic action,

mpV2dry, tr= dr/ +
z drn (i6)e m

where mo =M/ V and n =M/M.
According to Eq. (16), the effect of the interaction

given by Eqs. (11) and (12) is equivalent to the effective
moment of inertia

I, =m(V/4y p

associated with the rotation of M. The important obser-
vation is that this moment of inertia is inversely propor-
tional to the shear modulus of the matrix, making the
magnetic moment "too heavy" to tunnel in the limit of
p 0. To assess this effect quantitatively, one should
compare I, with the effective moment of inertia

I =mti V/2y K~

1B=— dr JE (i9)

is proportional to the square root of the effective moment
of inertia for M [4]. Consequently,

' 1/2

'ga: +1

K~ 2p
(2o)

The full expression depends on a particular tunneling
problem. Consider, e.g. , the situation when the external
field H is applied in the direction opposite to M. The
most interesting case of a small barrier [4] corresponds to
the fine tuning of H to the critical field, H, =2K~~/mo, at
which the barrier disappears; that is, H=(l —e)H, and

0. In this case,
T ' I/2

8 = t.' +8mP V
3/2 KN KI

2136 y K~ 2p

The temperature below which quantum tunneling dom-
inates over thermal transitions is determined by the in-
stanton frequency which is proportional to (I +I, )
This gives

i (17) and (18), one finds that the relative contribution of
the rotational recoil to the tunneling rate depends on the
ratio K&/p. More rigorously, the WKB exponent of tun-
neling

due to the dynamics of M itself [4], that is, in the limit of
an absolutely rigid atomic background. Comparing Eqs.

—&/2
I 1

kgT, -Ao); I: +
K~ 2p

(22)
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In the case of a small barrier, the exact expression is
—l/2

2 j' I/2K ]/2 I + 1

II

mo K~ 2p
(23)

Let us now check the validity of the condition d«c, /

ro;, under which Eq. (16) was derived. Note that the

crossover temperature T, is independent of the volume of
the particle, while the tunneling exponent is proportional

to V. Together with the dependence of 8 and T, on K&,
this means that one needs small d and large K& to ob-

serve tunneling on a reasonable time scale in an experi-

mentally accessible range of temperatures. Typical
values of d and ru, are [I] d-30 A and cu; —10 —10'

s . The condition d &&c,/ru; is, therefore, satisfied with

a large safety margin in the limit of K& « p. In the op-

posite limit of p«K&, it becomes the condition on e,

E((mtt/8 y Ktpd
We have shown that the conservation of the angular

momentum in the problem of spin tunneling leads to the

model-independent linear interaction of the magnetic mo-

ment with the elastic background. This interaction re-

sults in the dependences of the tunneling rate and the

crossover temperature given by Eqs. (20) and (22). If
the magnetic anisotropy and the shear modulus differ on

the order of magnitude, the one which is smaller deter-

mines 8 and T„. The smallest of the two (Kj. or p)
should be large enough, however, to provide suSciently
high values of exp( —8) and T„. The magnetic anisotro-

py in small particles is due to their atomic structure and

shape. The shape anisotropy, which originates from the

magnetic dipole interaction, puts the lower limit on K& of
the order of zmo —10 -10 ergs/cm . The value of the

transversal magnetocrystalline anisotropy depends on the

symmetry of the lattice. At low temperature it can be as

high (in, e.g. , Dy and Tb particles) as 10 ergs/cm .
Thus, in ferromagnetic particles, one should expect

K~ —10 -10 ergs/cm . Typical values of p in conven-

tional solids are 10' -10' ergs/cm . Consequently, for

such solids, the relative effect of the rotational recoil on

the tunneling exponent should not exceed 1%. However,

since the experiments on magnetic tunneling require low

temperature, which is usually attained by placing the

sample in liquid helium, it may not be out of the question

to work with small magnetic particles frozen in a helium

crystal. The shear modulus of the helium crystal is of the

order of 10 ergs/cm [10], that is, comparable with the

highest values of the magnetic anisotropy in small parti-

cles. In this case, the effect of the rotational recoi1 on

tunneling may become large. Note that by varying the

pressure, one can produce a quite appreciable change in

the shear modulus of the helium crystal. Because of the

exponential dependence of the tunneling rate on p, this

could result in the remarkable increase of tunneling on

pressure even for weak-anisotropy particles. Measure-

ments of quantum magnetic relaxation in an ensemble of

small particles frozen in a helium crystal should enable

one to observe this effect. Tunneling should disappear at

the melting transition when the matrix loses its ability to

absorb the change in the angular momentum. This effect

should be especially dramatic when melting into

superfluid phase takes place, which will be the case for

the transition on pressure at low temperature [11]. Such

an experiment would provide a rare example of macro-

scopic quantum tunneling in which gradual decoupling of'

the tunneling variable from the background reduces the

tunneling rate.
This work has been supported by NSF Grant No.

D M R-9024250.

[I] For most recent review and references, see, E. M. Chud-

novsky, J. Appl. Phys. 73, 6697 (1993).
[2] J. von Delft and C. L. Henley, Phys. Rev. Lett. 69, 3236

(1992).
[3] D. Loss, D. P. DIVincenzo, and G. Grinstein, Phys. Reu.

Lett. 69, 3232 (1992).
[4] E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60,

661 (1988); Phys. Rev. B 37, 9455 (1988).
[5] P. C. E. Stamp, Phys. Rev. Lett. 66, 2802 (1991).
[6] E. M. Chudnovsky, O. Iglesias, and P. C. E. Stamp, Phys.

Rev. B 46, 5393 (1992).
[7] A. Garg and G.-H. Kim, Phys. Rev. Lett. 63, 2512

(1989); Phys. Rev. B 43, 712 (1991).
[8] P. C. E. Stamp, E. M. Chudnovsky, and B. Barbara, Int.

J. Mod. Phys. 6, 1355 (1992).
[9] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N. Y.) 149,

374 (1983); A. J. Leggett, Phys. Rev. B 30, 1208 (1984);
for a review, see A. J. Leggett et al. , Rev. Mod. Phys. 59,

I (1987).
[10] S. Trickey, W. Kirk, and E. Adams, Rev. Mod. Phys. 44,

668 (1972).
[11]Note that for the magnetic particle in a supertluid heli-

um, quantized vortices may enter the problem of the con-

servation of angular momentum.

3436


