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Three complex ordinary differential equations, modeling interactions in wall-bounded turbulent
flow, are developed and studied. It is believed that the roll-wave interactions which are included are
of fundamental importance to turbulence production. Integration of these triad equations is shown
to be consistent with direct flow simulations and the Ruelle-Takens route to chaos.

PACS numbers: 47.27.-i

Wall-bounded turbulent flow is characterized by a se-
quence of events in which a relatively slow moving wall
fluid bursts [1] into the fast moving core fluid, and the
fast moving core fluid stueeps [2] into the wall region (see
also Ref. [3]). These events, which occur roughly 20% of
the time, have an overwhelming effect on force balance
at the wall, accounting for roughly 80% of the Reynolds
stress at low Reynolds number (Re). Fluctuating turbu-
lent wall flow on average is mainly organized in stream-
wise counterrotating rolls. (On the basis of energy, 75%
lie in such modes for low Re [4].) Roll patterns appear as
streaks in experiments [5]. Theoretical models for their
existence have been offered [6,7], but no generally ac-
cepted theory exists. The remaining turbulent fiuctua-
tions appear as propagating modes which travel down-
stream at a speed close to the mean speed at the locus of
maximal Reynolds stress [4,8]. For channel flow without
spanwise constraints propagating modes are plane waves,
and have been shown to act as triggers for the bursts
and suteeps of the streaks [4,8). A goal of this Letter is
the construction and examination of a simple dynamical
model which describes the interaction of key modes and
which leads to bursting and sweeping, essential elements
of wall-bounded turbulence.

For simplicity, we consider channel flow without span-
wise constraint, driven by a constant streamwise pres-
sure radient, —k. If denotes the density of the fluid

denote the streamwise, wall normal, and spanwise direc-
tions and U is the mean flow (streamwise). All velocities
are normalized by u, and length scales by L„sothat the
Reynolds number is R, = u. H/v = H/l, . The bar signi-
fies the ensemble average obtained by averaging over the
(xt Z3) plane. Velocity fluctuations are incompressible,
V u = 0 and satisfy

8 8 /' dU d—u~+U u'+~'t I uzt xt ' ( z dxz )

+u, ,u, + —V u, =0. (2)

p has been normalized by puz and time by L, /u, = v/uz.
Sreenivasan [7] has proposed that, in analogy with

transition, the locus of maximal Reynolds stress plays
a central role in wall turbulence. Confirmation of this
assertion is to be found in the simulations of Sirovich et
al. [4,8]. As shown there the flow can be optimally repre-
sented as a superposition of velocity modes each having
the form

2xim 2xiL
a „(t)@„(x2)exp (xt —Vt) + nsxs

= a~ (t) ex p[ us t] V~—„(x). (3)
g P

and H the half channel width, then the friction velocity, In simulations, L and W are the periodic length and

u, = kH/p, is representative of the rms fluctuations in width of the channel. For relatively low q, V to a good ap-

the wall region. The wall scale is L, = v/u„and the proximation is the mean velocity at the locus of maximal

Kolmogorov scale is roughly 5t, in the sublayer. Ex- stress. The spatial part dependence in (3) are eigenfunc-

periment [5] and simulation indicate that streaks are of tions of the two point correlation operator. m and n will

a distribution of roll modes and with peak wavelength be referred to as streamwise and spanwise wave numbers

close to 100l, . (Extension to the turbulent boundary and q as the vertical quantum number. The vertical de-

layer requires a slow streamwise dependence in u. and pendence Q~~n(xz) is obtained from simulations [9], and

l .) Integration of the mean flow equations yields in particular is discussed in Ref. [10]. a „(t)is found to
exhibit chaotic behavior typical of turbulence.

zq/R. We will use the results of simulations in a nominal may

) o
to construct a simple physical model. We consider mode
energies A~ „=(~a~ „[2)(brackets indicate the time av-

Here and in the following we use the subscripts (1,2,3) to erage), the first fifteen of which are [4]

(0,3,1) (0,1,1) (0,4,1) (0,5,1) (0,4,2) (0,1,2) (0,3,2) (0,2,1) (0,2,2) (0,6,1) (0,5,2) (1,3,1) (1,2,1) (1,4,1) (1,5,1)
0.0428 0.0399 0.0327 0.0287 0.0229 0.0210 0.0206 0.0197 0.0188 0.0138 0.0131 0.0125 0.0095 0.0084 0.0083
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The first line gives (m, n, q) and the second the percent
of total energy in each mode. One must also consider
degeneracies based on flow symmetries, e.g. , (0,4,1) and

(0,—4, 1) have the same energy, as do (1,2,1), (—1,2, 1),
(1 —2, 1), and (—1,—2, 1). One member of a degenerate
set will be used to represent all members of the (invari-

ant) subspace. The energy in the table is the fraction of
the total for the subspace.

The most energetic modes are m = 0 modes (rolls);
q = 1 modes are more energetic than other quantum
numbers, and m = 2 modes are less energetic than the
m = 1 modes. Perturbations based only on roll modes

(m = 0) can be rigorously shown to decay to Poiseuille
flow [11].A model [12] which is based on just such modes
has been shown to lead to artifactual behavior [3].

V'1 „(x)by construction satisfies continuity and hence

any finite sum of such terms satisfies continuity. The
pressure gradient is orthogonal to the space of such terms
and need not be considered. The principal interaction
term in (2) is quadratic, conservative, and governs the
passage of energy among modes. In a Galerkin projec-
tion, the quadratic terms lead to triad interactions. For
example, to follow the (0,4,1) roll, a possible triad in-

teraction is (0,4,1) (1,2,1) 8 (1,2,1). (Other possible
interactions are considered later. ) To follow these modes
the flow is assumed to have the form

u ~ A1Vp 4 + A2V1 2 + A3V1 2 + c.c., (4)

where for simplicity we have left out the (quantum) q = 1

dependence. The complex coefficients A„are time de-
pendent, and it remains to verify that these have secular
temporal growth as in (3). If (4) is substituted into (2),
then under Galerkin projection we obtain

Ai ——liA1 —qiA2A3 —Ai[cii[Ail +c12(lA2[ + [A3[ )]1

(5)
A2 ——l2A2+ q2A1A3 —A2[c21[Ail +c22(lA2[ + lAsl )],

(6)

A3 = 12A3 + q2A1A2 As [c» lA1 I' + C22([A2 l' + IA3 I')I

(7)
where [10] li = 19.91r—1.640e/r, l2 = (13.81—i17.82)r—
0 605e/r; q. i = 0.910, q2 = 1.914 —i1.612; cii ——16.56r,
c12 = 10.59r, c21 = (10.59 —i12.58)r; c22 = (8.582—
i6.743)r. Here r = R, /R, . R, = 180 is the Reynolds
number at which Vi, i(z2) were computed and the eddy
mscosity e is chosen to be 2.7. Cubic terms arise from uu
in (1).

(5)—(7) have the form of a three-wave resonance. Such
equations appear in wave interactions in shear flows [13],
in plasmas [14), and in thermal convection to describe
roll-hexagon competition [15]. Related equations with-
out cubic terxns appear in the interaction between oblique
Tollmien-Schlichting (TS) waves and Taylor-Gortler vor-
tices in curved channel flows [16].

Symmetries in the flow confer invariances on the dy-
namical system. Translational invariance in the stream-

wise and spanwise directions generates the trigonometric
terms in Vp4, V12, V 12. In addition, (5)—(7) are in-

variant under the group Ai ~ Aiez ', A2 ~ A2e~~

A3 —+ A3e~~+ ~', where a, b are arbitrary real constants.
The flow geometry possesses a number of reflectional
symmetries [17] and from these (5)—(7) are invariant un-

der Ai —+ Ai, A2 ~ A3, As ~ A2. From Lie theory

[18] each invariance can reduce the order of the system
by one.

To carry out this reduction we use the polar represen-
tation, A~ = r~e's~, i = 1, 2, 3, which yields

Tl = llT1 —qlr2T3 cos'1l —Tl [ 11 1 + 12( 2 + 3))

r2 ——l2r2+ qrir3 o (Q+ p)—
T3 = l2T3 + qrir2 cos(g —Hp) —r3R2

T2T3 . i Tl T3
81 = —qi sing, 82 ——l2+ q sin(Q+ 8p) —R2,

T1 T2

T1T2
83 = 12 —q»n(4 —Hp) —R2,

T3
(9)

where 0 = 83 —82 —81& R2 = c21T1 + c22(T2 + T3)~ R2
C21ri + C22(T2 + T3), qe' ' = q2, and c2&, czz are the real
and imaginary parts of c2~ with j = 1,2. The three
equations of (9) can be reduced to

2 3 T1T3 T1T2
g = q sinter —q sin(Q+ Hp) —q sin(@ —8p).

Tl T2
(10)

(5)—(7) can be reduced to (8) and (10), in the variables

ri, r2, rs, and @.
Other possible interactions: Possible triads which can

enter in the evolution of the (0,4,1) mode are (0,4,1)
(0,2,1) (0,2,1) and (0,4,1) 3 (0,1,1) (0,3,1), which
are pure roll mode interactions. By themselves such in-

teractions cause relaminarization to Poiseuille flow and
take place at a slow pace [4,8], and are not significant to
the rapid dynamics of wall turbulence. Another possi-
ble triad interaction is (0,4,1) 8 (1,3,1) (1,1,1). This
may be neglected since (1,1,1) (which does not appear
in the table) is at a lower energy so the interaction is

weak. Also in the evolutionary equation for ap141 (i.e., for

Ai) this interaction leads, e.g., to a term oc aisa 11, but
the product is uncorrelated (aisa 11) = 0 in the exact
interaction which is further evidence that this is weak.

To test such ideas we integrated the (0,3,1) (1,5,1)
I8I (1,2, 1) triad along with (5)—(7) and coupled through
(1,2,1) to (5)—(7) to numerical integration and found that
(0,3,1) and (1,5,1) decayed to zero under normal initial
conditions. Similarly (0,6,1) (1,3,1) (1,3,1) is an eli-

gible triad of the table, and is coupled to (5)—(7) through
cubic terms; e.g. , Ap4[Aisl appears in (5)—(7). If these
coupled triads are numerically integrated, the modes in
the second triad decay to zero. [If (0,6,1) 8 (1,3,1) I3

(1,3,1) is decoupled it supports nonzero solutions, which,
however, are nonchaotic at the relatively low Re we con-
sider. ] Other numerical experiments further support the
idea that the triads interact weakly. We regard (5)—(7)
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FIG. 1. Three-see-space of the fluid velocity. (a) R. = 156 'ba .=, ( )A =158.4, and(c) R, =168.

as being representative and now d' th
'

iscuss eir solutions.
Steady solutions: (A) A = A = A = 0, corre-

sponding to plane Poiseuille flow, is stable if ti, l2 ( 0
or i, & 62.2. Coincidentally, this is the value of
R, ound in simulations and experiments [19]. (B):

= li/cii, A2 = A3 = 0. The condition that ti ) 0
implies that R, ) 84.9. Physically this solution corre-
sponds to one steady roll in the flow, which may be shown
to e unsta le.

Periodic solutions: (A) Ai ——0, A2 = 0, A3 = ae'
with a =.Jt"/ " u) =!'— ' ' ' '

e'J 2/c22 '2 c22a, a single oblique wave.

By symmetry, A2 = ae'~' and A = A3
——0 is also a

solution. It may be shown that for 62.2 ( R, ( 130.7,
both of these solutions are stable, and which solution
appears depends on the initial conditions. (B) Another
periodic solution can be found by 1 tt' A
r20eiw At

e lng I =Tip
0 3 —+A2 here rip and r2p are real, determined

12 20 & 2 Qr 10iTip + QIT20 rip(CiiTip + 2CI2T ) = 0 l

(c2irip + 2c22r20) = 0 and the frequency by ~ = t' +
(c2irip + 22T20) with C. = ~(e) iI' ~ ™()

ion corresponds to two oblique waves d
s e y roll. The stability can be investigated by means
of t e polar decomposition, (8) and (10). A 4 x 4 Ja

determines the eigenvalues which in turn determine the
stability. From this it is found that the s 1 t' '

al
uns a e w enever it exists. This result is consistent with
a simulation in which the flow field l

' f
of obli

e evo ving rom a pair
o o ique waves is characterized by a rapid development
into a turbulentlike state [20].

Quasiperiodic and chaotic solutions: For 130.7 (R, (
157.5, we find sim lBimp/e quasiperiodic solutions, with Ai(t),
r2(t), and rs(t) periodic and A2 = r2(t)e'& '+~) A
~ (g)~i(~t+e) quasiperiodic because of the appearance of
the second frequency w. When 157.5 & R, ( 166, we find

comp icated quasiperiodic solutions, meaning that Ai(t)
is no longer periodic. The solutions appear complicated
but some symmetries are preserved. In the interval 166 &

haos and quasiperiodic solutions coexist.
n order to view the flow of these solutions in phase

space we consider the three space of the fluid velocity it-
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FIG. 2. A. A comparison of the statistics with the full simula-
tion. data froa a om the original simulation are marked th lid

lines are
e so

a e Re
are from the model equations at R = 180. A

streamwise corn oponent u, , and normal component e, ,

self ~u u u( 2 3) at some nominal location in space. Fi ure
1 de icts thisp' is behavior at three representative values of

157.5 t
the control parameter B,. In the range 130.7 R

the motion lies on a two-torus and this is seen in

ig. 1(a). (This was calculated at Re= 156.) In the
range 157.5 (R, & 166 the motion lies on a three-t

e or erhness of this motion is shown in Fig. 1(b)
(calculated at R = 158.4). A typical example (drawn
for R, = 168) of the chaotic range 166 & R, ( 180 is
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FIG. 3. The power spectrum at R = 180.

shown in Fig. 1(c). For special, nongeneric initial data
quasiperiodic trajectories may also be found in this range.
Although thr""=torus motion appears, it is not typical.
The likely route to chaos follows the Ruelle-Takens sce-
nario [21] in which thr""-torus motion experiences a sym-

metry breaking. This is in contrast with the heteroclinic
cycle which is central to earlier models [12] and which is
very likely an artifact of Galerkin projection [22].

The chaos which is found in this simple model shares
a number of features found in large scale turbulent simu-
lations. The amplitude and phase of propagating modes
closely resembles typical curves found in the full simu-
lation [4], and thus the propagation property is verifed.
The components of (u), , and average Reynolds stress
for the model are shown in Fig. 2 and although these are
quantitatively different from what is found in the full sim-
ulation [4], the qualitative resemblance is striking. The
temporal power spectrum shown in Fig. 3 also closely re-
sembles that found in a more complicated model [10] and
shows a second peak as indicated in recent experiments
[23].

Real turbulence occurs as the result of countless inter-
actions among roll-like and wavelike modes [4]. In the
present investigations we have demonstrated a range of
behavior for the basic triad interactions. This model is
of a stereotypical type and captures fundamental features
of wall-bounded turbulent flows. In a full simulation or a
real experiment such triads may be regarded as interact-
ing subsystems. Moreover, as we have argued in a limited
sense these interactions appear to be relatively weak. If
the table is expanded to include more modes, the interac-
tions become more complex. Within a limited framework
of computation we have shown that the interactions are
relatively weak. We regard our model as a caricature or
as being impressionistic [24). Furthermore, it is s spec-
ulation that wall-bounded turbulence may be described
by a (Re dependent)' system of weakly interacting triads.
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