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Universal Scaling Laws in Fully Developed Turbulence
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The inertial-range scaling laws of fully developed turbulence are described in terms of scalings
of a sequence of moment ratios of the energy dissipation field e& coarse grained at inertial-range
scale E Th. ese moment ratios es" ——(es+ )/(es) (p = 0, 1, 2, ...,) form a hierarchy of structures.
The most singular structures e& are assumed to be filaments, and it is argued that ~& t

Furthermore, a universal relation between scalings of successive structures is postulated, which leads
to a prediction of the entire set of the scaling exponents: (eP) E &, r„= —sp+ 2[1 —(s)"] and

(av;) -e', ~„=~+ 2[1 - (-,') 1'].

PACS numbers: 47.27.Gs

(„=p/3+ r„/s. (2)

The existence of such a universal state was first pos-
tulated by Kolmogorov [3] in 1941, who then presented
a theory from which the scaling exponents are predicted
with no adjustable constant. Kolmogorov (K41) assumes
that all statistically averaged quantities at scale E depend
only on the mean dissipation rate e and f. Dimensional
considerations then lead to the predictions that r„= 0
and t,'~ = p/3, because (e~r) P is independent of E.

At p = 2, it results in the famous 2/3 law for the av-

eraged kinetic energy fluctuations (bv~~). Nevertheless,
extensive experimental [4] and numerical [5] studies dur-
ing the last 30 years provide evidence that K41 is not
accurate: (& seems to deviate significantly from p/3 for

p ) 3. This has been referred to as intermittency cor-
rections to K41. A number of phenomenological models

[1,6—12] have since been proposed to address this correc-
tion. All existing models, however, appeal to adjustable

An intriguing aspect of fully developed turbulence is
the possible existence of universal scaling behavior of
small-scale fluctuations. In large Reynolds number flows,
at spatial scales E called inertial-range scales (Eo )& E &) t7,

where Eo is the energy-injection scale and tl is the molec-
ular dissipation scale), turbulent fluctuations reach a sta-
tistically quasiequilibrium state which is characterized by
a continuous energy flux from large to small scales. The
universal scaling behavior refers to the observation that
all moments of fluctuations at scale E have a power-law

dependence on E, and the scaling exponents are univer-

sal. Two fluctuating quantities are of special interest:
the energy dissipation averaged over a ball of size E, et,
and the velocity differences across a distance E, bv&. The
scaling behavior of et and bvt is expressed as

(bvt ) E~&, (et") P". (1)

Under the Kolmogorov refined similarity hypothesis [1],
which has recently received both experimental and nu-

merical support [2], gz and rz are related, for positive p,
by

parameters, in the determination of („and r„, which ei-

ther have no physical meaning, or cannot be determined

by plausible physical arguments.
In this Letter, we present a set of hypotheses about the

statistical structures of small-scale fluctuations in tur-
bulence. These assumptions lead to predictions of the
entire set of scaling exponents of dissipation moments
and velocity structure functions, without appeahng to
adjustable parameters. Here, we characterize the en-

ergy dissipation field et [13] by a hierarchy of fluctua-

tion structures: et" (p = 0, 1, 2, ...,) defined by the ra-

tio of successive dissipation moments (e~&+ )/(8&). The
two extreme characteristic structures of the hierarchy,

e& and e&, are associated, respectively, to the mean
fluctuation structure e and to filamentary fluid structures
[14—16], in accordance to the two-fluid model [17]. As

E ~ 0, the mean dissipation e& is kept constant, while

shows divergent scale dependence. A simple argu-
ment leads to the determination of the scaling behavior

of eI . et ~ E / It is furthe. r assumed that the seal-

ing behavior of any intermediate fluctuation structures,

say e&"+, is determined by a universal relation involving

only e&" and e& . We then obtain an expression for the
scaling exponents 7„=—2p/3 + 2[1 —(2/3) "].

Specifically, the intensity of the pth order dissipation

structures er" is given by

(„) (e~t+ ) f eq+'P(et)der

where P(es) is the probability density function (PDF)
of et, and Q„(et) = e&P(et)/ f etP(et)des. Note that

Q„(et) is a weighted PDF for which e&" is the mathe-
matical expectation. For reasonable P(et) (with a sin-

gle maximum and exponentially decaying tail), e&" is a
monotonically increasing sequence of p. Also, for large p,

Q„(er) is strongly peaked around e&", indeed, it can be
shown that the variance of Q~(et) tends to zero as p goes

to infinity, if e& ( oo. Therefore, Q„(e&) for large p
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captures fluid structures with specific dissipation inten-

sity ~&" . Moreover, as p ~ oo, ~&" naturally approaches
(oo)

~e

Working with the quantities c&" is motivated as fol-
lows. It has been observed in numerical experiment [18]
that dissipation of high intensities displays a higher de-
gree of coherence in space, and can therefore have differ-

ent scaling properties. Since e&" probe dissipation struc-
tures of increasing intensities as p increases, the varia-
tion of their scaling with p gives directly a differentiation
of physical properties of these structures. We now pro-
ceed in determining the scaling properties of e&" . First,
by definition, s& is scale independent. It is just the
mean field that Kolmogorov [3] used for determining all
scaling properties of dissipation and velocity structure
functions. The presence of anomalous scaling laws stems
from a divergent scaling dependence of e& as E -+ 0 due

to the presence of intermittent structures. ss is the
coarse-grained intensity of the most intermittent struc-
tures which, we assume, are isolated filaments. They
are geometrical objects of dimension one embedded in
thre=-dimensional space. The scaling behavior of ~& is
determined by the following argument. Dimensionally, it
can be estimated by a kinetic energy divided by a time:

SE /ts. The anomalous scaling can enter here
either through bE~ or through ts. We chose to have no
anomalous scaling in ts, which amounts to setting a uni-
form time scale for the dissipation of various intensities.
This yields ts ~ i/sE2/s. The underlying physical pic-
ture is, roughly speaking, that the mixing rate of fluid
elements which determine this time scale for the dissi-
pation is homogeneous in space, irrespective of the am-
plitude of dissipation intensity (see the next paragraph).
The largest available kinetic energy to be dissipated is

6vo, which corresponds to the situation of quasidisconti-
nuity in velocity fluctuations. We then obtain

g ) -2/3
i~i —/ -2 s

&&s)
(4)

A fluid mechanical picture of those extremely intermit-
tent events e& is as follows. Associated with a strong fil-
amentary structure are quasi-two-dimensional spiral mo-
tions around the filament axis with only a small velocity
component along the axis [19]. Such motions represent
a remarkable coherence with respect to lower intensity
fluctuations. These filamentary structures constantly en-
train surrounding, less ordered fluid elements which, af-
ter being absorbed into the structure, also display quasi-
two-dimensional motions. This entraining process there-
fore effectively dissipates their kinetic energy fluctuation
along the axis of the filament, and since surrounding flu-
ids do not move in any preferred direction, the dissipated
energy is of the order of their total (fluctuating) kinetic
energy ( bv&). The assumptions in the last paragraph

=A e e 0&P&1 (6)

so that as p ~ oo, e& ~ e& . A„are constants which(s) (~)

imply that in the most coherent state, absorbed (dissi-
pated) kinetic energy by coarse-grained structures is in-
dependent of the length scale E and attains the typical
amplitude of the large-scale kinetic energy. On the other
hand, the rate of entrainment (the time scale of the dis-
sipation) is independent of the degree of the coherence of
the structures; this rate is associated with motions of fil-

amentary structures as a whole. This assumption needs
experimental verifications.

This picture points out the nature of intermittency
growth. It is the tendency towards the formation of local
coherent structures that drives a strong deviation from
the mean fluctuation level. In regions of these coherent
structures, an equipartition of kinetic energy is realized
(velocity difference is independent of length scale). Re-
call that moving towards equipartition is the statistical
interpretation of 3D energy cascade. While most turbu-
lent structures cannot reach such an equipartition state
because of the disordered motions of smaller eddies, the
most intermittent structures, which correspond to rare
and exceptional trajectories in phase space, have effec-
tively achieved this goal by establishing remarkable co-
herence locally.

It follows from (3) and (4) that as p ~ oo, r„+i —r„~
—2/3, or rz -+ —sp+ Co. This asymptotical law has
received some support from the recent published experi-
mental measurements [20]. A geometrical interpretation
of the constant Co can be made through the Legendre
transform: Co is the codimension of the very high in-
tensity structures as l -+ g (see more discussion below).
Since these high intensity structures are filaments, the
Hausdorff dimension is 1; thus Co = 2. We then obtain

r. = —.'p+2+o(p) (p ~) (5)

Characteristic dissipation intensities es" for finite p
correspond to less singular and less coherent structures
which may be geometrically more ribbon or sheetlike [15].
The scaling of s&" characterizes how singular the pth or-
der structures are. These structures are results of the
dynamics which intend to form very singular (e& ) struc-
tures, but fail to fully accomplish it because of abundant
surrounding disorder. In physical space, pth order struc-
tures of intensity e&" are mostly likely to be surrounded
by structures of (p —1)th order having slightly lower in-

tensity. In time, structures of intensity ~&" are also
likely to occur before the formation of even higher in-
tensity structures of pth order. This reasoning suggests
that the scaling behavior of e&" may be related to that
of es" and ez . We propose that the scaling behavior

of e&"+ is determined by a universal relation involving

and e& for all p. Specifically, we postulate
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It can be verified that the asymptotic solution (5) is sat-
isfied exactly. Let us pose 7„= —2/3p+ 2+ f(p) with

f(oo) = 0; we then obtain a second order homogeneous
difference equation for f(p):

f(p + 2) —(1 + P)f(p + 1) + Pf(p) = 0. (8)

The only nontrivial solution of (8) is f(p) = o.P". The
whole solution ~„must satisfy two boundary conditions
7o = 0 and 7 y

= 0. The first condition is derived from an
assumption that the support of dissipation is finite in the
limit of zero viscosity, and the second is exact. These two
conditions uniquely determine a and P: n = —|o = —2

and P = 2/3. The final expression of w„ is then

;= —',p+ 2[1 —(-'.)"] (9)

Using (2), we predict that

( = p/9+2[1 —(-')" '] (10)

The present model predicts an energy spectrum of tur-
bulence

E(k) k ++ (~) =k ~

A widely used quantity [4,5], y„characterizing intermit-
tency correction to K41 is the deviation from K41 of the
exponent for the sixth order velocity structure function:

(s = 2 —p. Experimental measurements [4,5] give a p
between 0.2 and 0.25. Here, we predict p, = 2/9.

There has been much effort in both experimental stud-
ies of laboratory turbulent flows and direct numerical
simulations of the Navier-Stokes turbulence to measure
the scaling exponents t,'„of high-order velocity structure
functions [4,5]. Although the accuracy of the measure-
ments is not all satisfactory, expecially for large p where

systematic errors may result from undersampling, qual-
itative features are clear: strong deviations from K41
occur for p ) 3. Recently, Benzi et aL [21] made sig-
nificant progress in accurately determining these scaling
exponents. With the concept of extended self-similarity,
they are able to extend by almost a decade the inertial
range, allowing for significant improvement of the accu-
racy of the numerical values of t,'„(under a few percent
for p up to 8, private communication from Benzi). In
Table I, we compare our predictions (10) to their results.
It can be seen that the agreement is very good.

Legendre transform of vz, or (&, gives a conjugate de-
scription of the multiscaling behavior of turbulence. This

are independent of E, but may depend on the specific
geometry of the flow system. (There is no reason that
they are universal. ) The correctness of (6) needs exper-
imental verification. We believe that this relation is a
consequence of some hidden (statistical) symmetries in

the solution of the Navier-Stokes equations.
It follows from (3) and (6) that for each p = 0, 1, 2, ...,

~,+, —(1+/)~„+~+P~„+ -', (1 —P) = 0.

TABLE I. Comparison of the measured scaling exponents

(„from experiments [21] and the theoretical prediction (10).

Order y
2
3
4
5
6
7
8
10

Experiment
0.71

1
1.28
1.53
1.78
2.01
2.22
2.60

[21] („ Theory (10)
0.696

1
1.279
1.538
1.778
2.001
2.211
2.593

K41 (~ = p/3
0.667

1
1.333
1.667

2
2.333
2.667
3.333

Here, h(p) are exponents associated with the dissipation

field. It is now clear that the scaling exponents of e&",
7.„+p —w„, are just the mean exponents h(p) integrated

from p to p+ 1. Recall that e&" is the expectation of

Q„(er) which are the central objects in the present de-

scription. The assumption (6) can also be understood
as an invariant relation between the mean and relative
dispersion of Qz(er) with respect to scale transforma-
tion. Since Qz(et) has finite dispersion at small p, they
mostly select geometrical objects with a range of dissipa-

tion intensities around s&("), reflecting uncertainty about
tracing dynamically revelant objects of low intensities.
This is quite consistent with the observation [18] that
low intensity Quctuations have a considerable degree of
randomness. h(p) can be interpreted as the mean scal-

ing exponent of this range of objects. The uncertainty
in exponents naturally leads to uncertainty in dimension
estimate. As p increases, however, both exponents and
dimensions become properties more specific to fluctua-

tion intensities at e&", since the variance Var@ (et) tends
to zero. Only there can geometrical objscts in space be
clearly identified. These are the asymptotic filamentary
structures.

transformation can be calculated analytically here, which

yields a function D(h), usually referred to as the fractal
dimension of scaling exponent h. For („, the fractal di-

mension D(h) is

D(h) = 1 + cq (h —
s ) —c2(h —

s ) ln(h —
s ), (12)

(1+lnln
&

) 3
cI =31

lnzs ) '
ln2s

It is interesting to note that D(1/3) = 2.97, D(0.381) =
3, and h;„= 1/9 ) 0. The function D(h) was the
basis for the multifractal interpretation [6] of turbulence
scalings. It is natural to ask what their interpretation is

in the present framework. We would like to argue that
each individual exponent h in (12) may not be dynami-
cally relevant; instead, a mean exponent h(p) should be
introduced. Observe that

@+1 g p+1
"dp = h(p)dp = h(p). (13)
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In 1974, Kraichnan [22] pointed out that once K41 is

abandoned, a Pandora's box of possibilities is open and
specific contact with the Navier-Stokes dynamics must be
made in order to determine scaling properties of the iner-
tial range. Phenomenological models, both the family of
models of log-normal type for et [1,9—11] and those based
on multiplicative processes [7,8] (motivated by the idea
of multifractality [6]), are unable to relate themselves to
the Navier-Stokes fluid dynamics. Consequently, param-
eters in those models cannot be determined by plausible
arguments. The present work attempts to make a con-
crete connection to the Navier-Stokes dynamics. To sum-
marize, two major assumptions are made in the present
description: First, the self-similar structure expressed by
(6) relates the scaling properties of structures of vari-
ous intensities, which is, we believe, due to the quadratic
nonlinearity of the underlying dynamics. Indeed, similar
arguments can be carried out to analyze Burgers equa-
tion, a strongly intermittent case. Second, there is a
class of structures that represents the most intermittent
events; they are asymptotically filaments. The nature of
these asymptotic flow structures is a specific property of
the three-dimensional incompressible flows: only filamen-
tary structures seem to be mechanically stable. In two-
dimensional incompressible flows with strong enstrophy
cascades, the corresponding structures may be instead
point vortices, and the quantitative predictions should
therefore be a little difFerent. What is interesting is that
these two ingredients seem to fully specify the scaling
properties of turbulence at inertial-range scales. Much
work is in progress in digesting the mathematical con-
tent of the present work; results will be communicated in
the near future.
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