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We present new, non-Abelian solutions to the equations of motion which describe the collective excita-

tions of a quark-gluon plasma at high temperature. These solutions correspond to spatially uniform

color oscillations.

PACS numbers: l2.38.Mh

The long wavelength excitations of a quark-gluon plas-
ma are collective excitations which are described by non-

linear equations generalizing the classical Yang-Mills
equations in the vacuum. Most studies of such equations
have been limited so far to their weak field limit, where

the modes reduce essentially to Abelian-like plasma
waves. The purpose of this Letter is to present new, truly
non-Abelian solutions that we have obtained recently. At
leading order in the gauge coupling g (we assume g((1
in the high temperature deconfined plasma), the collec-
tive dynamics is entirely described by a set of efl'ective

equations for the soft gauge mean fields A,"(x) which de-

scribe the long wavelength (A, —llgT) and low frequency
(ta gT)-excitations (T denotes the temperature) [1,2].
[Throughout this work, the greek indices refer to Min-

kovski space, while the latin subscripts are color indices
for the adjoint representation of the gauge group
SU(N). ] The equations satisfied by Aat'(x) are

[D",F„„(x)l, -j„'",d(x),

where D" t)"+igA" (x), A"=A,"T', and F"" [D",D "l/
ig F,""T'. The induced current j„'" describes the

response of the plasma to the color gauge fields A,". It is

proportional to the fluctuations in the phase-space color
densities of quarks and gluons. Its expression is [1,3]

for retarded boundary conditions [A,"(x) 0 as xa
—ao]. The notations here are as follows: to~=(2N
+Nf)g T /18 is the plasma frequency, v"—= (l,v), where
v=k/lc is the velocity of the hard particle with momen-

tum k (k—= (k~), and the integral fdic runs over all the
directions of the unit vector v. Furthermore, the func-
tions IV, (x;v) are generally nonlocal and nonlinear func-
tionals of the gauge fields, defined by

W~(x;v) ~ du U~b(x, x —vu)v. Eb(x —vu), (3)

where E'—=F' is the chromoelectric field, and U(x,y) is
the parallel transporter along the straight line y joining x
and y. The induced current (2) is covariantly conserved,
[D",j„'" (x)l 0. The energy density of an arbitrary
gauge field configuration in the plasma has been recently
computed as [3]

T (x) 2 [Ea(x) E,(x)+B,(x) B,(x)l

+ -ta W, (x;v)W, (x;U), (4)dQ a

with 8,'(x)=———,
' e't F~t (x). Note that T (x) is mani-

festly positive, and so is therefore the excitation energy
8(t) =fd xT (t, x), at any time t

The solutions to the non-Abelian field equations (1)
have direct physical relevance: They correspond to col-

lective excitations of the high temperature quark-gluon

plasma. In this Letter, we study particular solutions

which are uniform in space. (Another interesting limit,

that of a static field configuration, has been considered

recently [4], with the conclusion that no finite energy
solution exists. ) For convenience, we choose the temporal

gauge, A, (x) 0. Hence, A,"(x)=—(O, A, (t)).
For uniform fields, the functions W, (t;v) are simple lo-

cal functionals of the gauge potentials [3],

W, (t;v)- —v A. (t),
and the same holds for the induced current (2), j,'" (t)
= —to&A, (t), p,'" (t) 0, and for the energy density (4),

dA, dA,
T (t) =— +tapA, A,

2 dt dt

2
f~bvfade(Ab ~ Ad)(A .A ) (6)

We have used here the expressions of the field strengths
in terms of the vector potentials,

E.(t) -— ', B.(t) -Lf"Ab(t)XA, (t). (7)

corresponding to the component p =0 of Eq. (1). These
equations are similar to the classical Yang-Mills equa-

The field equations (I) reduce then to the following

equations for the vector potentials A'(t) =A,'(t) T'.

d 8'
+t, A +g ([A Ai] Ai) 0t'

together with a constraint (Gauss's law)
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d h
+to hi+g hi(h +h ) =0

dt
(10)

plus two similar equations for h2 and h3. The associated
energy density,

T =—g +to h
dh;

2; dt

2

+ (hh+hh+hh ) (I I)

is an integral of motion and acts as an eAective Hamil-
tonian for the functions h; (t)

At this point, it is convenient to make a scale transfor-
mation and define the dimensionless variable x=—co~t, as
well as the dimensionless functions fi(x)—= (g/toP)h;(t)
We also assume fs =0, with no significant loss of general-
ity. We obtain then for f I and f2 the coupled nonlinear
equations

f ( )+[1+[f2( )J'}f ( ) =0,

f (x)+[1+[fi(x)]'}f,(x) =0,
(12)

tions in the vacuum, which have been extensively investi-
gated already for the case of SU(2) [5-8]. They diff'er,

however, by the presence of the thermal mass term copA',

which, as we shall see, has a strong eA'ect on the dynam-
ics. Note incidentally that, for gauge fields satisfying
Gauss's law (9), the Poynting vector 5'= T' vanishes [3].

The constraint (9) is satisfied, in particular, by field
configurations of the form A,'(t) =A,'h'(t) (no summa-
tion over i), with constant A, and arbitrary functions
h'(t). Indeed, for such fields, the three color vectors
[A,'(t)} and {dA,'/dt} (i =1,2, 3) are parallel in color
space. In the rest of this Letter we restrict ourselves to
SU(2), and assume A,'=8,'. This ansatz is equivalent to
that proposed by Baseyan, Matinyan, and Savvidy [5], up
to a trivial global gauge rotation [g]. The functions h; (t)
then satisfy

originates from the thermal mass, play an essential role in

this respect. Because of them, and of energy conserva-

tion, a trajectory [f;(x)} cannot leave the bounded do-

main delineated by the equipotential lines f I +f
+fi f2 =28 (Fig. 1). Let us assume 8&1. Then, since

If' (x) I
~ J28 (see Fig. 1), it follows that

~f; (x)
~

+
1 tor

any x. Furthermore, the quantity [1+f; (x)], which

plays the role of an eAective frequency squared for the
motion in the direction j&i, remains of order 1 for any x,
so that f; and f; remain of the same order of magnitude.
Consequently, if the conditions on the functions f; men-

tioned above are satisfied for some xo, then they are valid

for any x. The situation here is diAerent from the classi-
cal, vacuum case, where the equipotential lines are given

by hih2 =(2/g )T; then, for given energy T, the

motion could extend arbitrarily far along the h] or the h

axis. Using the language of dynamical systems, one may
observe that, for the system (12), the origin of the four-
dimensional phase space (fi,f I,f2 f2) is an elliptic fixed
point, corresponding to a neutrally stable equilibrium [9].
At T=O, this same point is marginally unstable. Thus,
apart from ensuring bounded trajectories I~f;(x)~ ~ I},
which, as we have discussed, guarantees the consistency
of our equations, the quadratic terms fi in Eq. (13) also
improve the stability of the system.

Let us consider now simple, periodic solutions to the

system (12).
(a) The simplest motion is one dimensional along the

axis 1 or 2. Assume, e.g. , f2=0. We get then a simple
harmonic oscillator equation for fI,

fi(x)+fI(x) =0.
The general solution is f I

=a
I cosx+ a 2sinx, with a I + a22 2

=28 . The corresponding field configuration, A ' (t )
= (C I costoPt+ C2sintoPt ) T ' [with C; =—(toP/g)a;J, and

=A =0, describes periodic oscillations (with period

where the overdots indicate derivatives with respect to x.
The energy density (11) is then

I I & I I I I

]

I I I I

]

I I I I

]

I I I I
I

I

700 P (j2y j2+f2+f2+f2f2) — P ~ (13)

The Hamiltonian iV is that of a system of two nonlinearly
coupled harmonic oscillators with coordinates fi and f2
Note that the diN'erent parameters characterizing the ini-
tial system (i.e., roP, g, T ) combine into a single, dimen-
sionless one, 8 —= (g /toP)T, which measures the total
energy of the mechanical system: P =0 .

In deriving Eq. (1), we have assumed the gauge fields
to be weak (A ~ T) and slowly varying (BA-gTA) [1].
Remembering that co& —gT, one sees that these condi-
tions imply (f (x)( ~1 and (f (x)( —(fi(x)(, so that 8 is,
at most, of order unity, 0+1. These limitations are con-
sistent with the dynamics described by Eqs. (12). The
quadratic terms fi +f2 in the Hamiltonian (13), which

—4—

FIG. 1. Equipotential curves for the Hamiltonian ]t, Eq.
(13). The parameter 8 ranges from 0.2 (inner curve) to 2.5

(outer curve).
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7'o 2x/tu~) in space-color direction l.
(b) Another one-dimensional, but less trivial example

corresponds to periodic solutions with f2(x) =+'f~(x)
=—+ f(x). These solutions describe in or out of phase os-
cillations of the colors I and 2. The function f(x) sat-
isfies the nonlinear equation

f(x)+f(x)+f'(x) =0,
for which the integral of motion is

82 j2+I2+ ~ /4

A particular solution to (15) is

f(x) =fgcn[(28 + I ) ' (x —xo);k],

(is)

(i 6)

(i 7)

and

fe=(+28 +I —I)'

It can be easily seen that f~

= +f2 = + fe are the coordi-
nates of the intersection points between the trajectories
and the equipotential lines in Fig. I. The solution (17)
corresponds to the initial conditions f(xo) =fe and
f(xo) =0. For the in-phase oscillations, the associated
gauge potentials are A '(t) =h(t)T', A (t) =h(t)T,
and A3(t) =0, where h(t) =(tu„/g)f(rut t) is a periodic
function, with period

It(k),
p (28 +I)' (20)

and It (k) is the complete elliptic integral of modulus k.
Since 8& I, 7' remains of order To=2tr/tot, Thus, it. is

the plasma frequency m~-gT which controls the time
variation of the nonlinear color oscillations (17), for any
value of the parameter 8+1. This is true, in particular,
for small oscillations, that is, when the energy density
T~ 0, so that 8=fe&&1 and k 0. Then, the period-
ic solution (17) reduces to a simple harmonic oscillation,
and 'T 7'o. In contrast, in the zero temperature case,
as T 0, the corresponding period is diverging [5].
[The T =0 expression for 7' is obtained from Eq. (20) by
replacing (28 + I)'t co& (2g T )'t and k I/K2. ]

For this solution, the nontrivial field strengths are
E,'= —8,'h, with i =1,2, and 8, =gh 8,. Accordingly,
the three vectors E~, E2, and B3 are mutually orthogonal.

An important question concerns the stability of the
periodic orbits of the system (12). For the corresponding
equations at zero temperature, it has been shown,
through a numerical analysis, that unstable periodic tra-
jectories exist [5]. In particular, the in-phase oscillations
of two colors [the vacuum analog of (17)] are unstable

where cn(x;k) is the Jacobi elliptic cosine of argument x
and modulus k, and xo is the arbitrary origin of the time.
The parameters k and fe are related to 8 by

1/2
1 11—

428'+ I

[6,7]. In the case of the system (12), the presence of the
linear terms ft and f2, which originate from the thermal

mass in (11),guarantees the stability of the solutions, for
small oscillations and for most initial conditions; indeed,
when (f;(« I, ft +fz »fif2 and the dynamics is essen-

tially that of harmonic oscillators. This is verified in the
numerical analysis of the system (12) performed in Ref.
[10] in the physically different context of a classical
Yang-Mills-Higgs system in the vacuum. There, the
mass terms for the gauge fields are generated through
spontaneous symmetry breaking and are proportional to
the vacuum expectation value of the scalar field, rt =((I).
The correspondence between the two sets of equations is

simply given by to~ g rt /2. The numerical experiment
in Ref. [10] clearly shows that for 8« I (e.g. , for
8=0.2) most of the trajectories are quasiperiodic. As 8
increases, the stochastic motion strongly develops and,

beyond a critical value 8, =6.6, it fills the entire permis-

sible range of motion in the phase space. As the above

value of 8, stays in the limits of validity of the present ap-

proach, it would be worthwhile to further investigate

the physical significance of this transition. Analogous

findings, concerning the nonintegrability and the stochas-
tic behavior of the dynamical system (12), are presented
in Refs. [11]and [12].

In conclusion, we have studied here global color oscilla-
tions of the high temperature quark-gluon plasma, by
looking at the spatially uniform limit of the effective
equations of motion derived in Ref. [I]. We have shown

that the plasma frequency to& =gT(N+NI/2) 't /3 char-
acterizes the inertial properties of the plasma both for the
Abelian-like and for the genuine non-Abelian collective
motion. The phase-space motion is quasiperiodic for
small oscillations and for most initial conditions. We
have obtained explicit nonlinear solutions for SU(2)
which describe in or out of phase oscillations of two

colors [the generalization to the in phase oscillations of
the three colors, i.e., h~ h2=h3 in Eq. (10), is straight-
forward [3]]. Such solutions can be embedded in any
larger SU(N) theory in the standard way [13]. As a final

remark let us emphasize that we have assumed here a
weak coupling regime in which the damping of the color
modes can be ignored. A recent discussion of issues relat-
ed to this question can be found in Refs. [14,15].
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discussions, and D. Ullmo for having indicated to us Refs.
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