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It is shown that a physically reasonable spacetime that is eternally inAating to the future must possess
an initial singularity.
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Inflationary models of cosmology [ll yield a rather
different picture of the full present Universe (as opposed
to the part of it that we can directly observe) than that
given by the standard big bang cosmology. In current
inflationary models the Universe consists of a number of
isolated thermalized regions embedded in a still-inflating

background [2]. The thermalized regions grow with time,
but the inflating domains that separate them expand even

faster, so that the Universe is never completely thermal-
ized. It can be shown [3], that the boundary of a
thermalized region is spacelike (and it lies to the past of
points within the region), so that it is not possible to send

a signal from the interior of a thermalized region to the
"inflationary background" in which it is embedded.

Theoretical work supported by computer simulations

suggests that this broad picture continues to describe the

Universe as it evolves into the future [4]. Previously
created regions expand and new ones come into existence,
but the Universe does not fill up entirely with thermalized
regions. In other words, inflation is eternal to the future

A model in which the inflationary phase has no end and

continually produces new islands of thermalization natu-

rally leads to this question: Can this model also be ex-
tended to the infinite past, avoiding in this way the prob-
lem of the initial singularity? The Universe would then

be in a steady state of eternal inflation without a begin-

ning.
The purpose of this paper is to show that this is in fact

not possible in future-eternal inflationary spacetimes as
long as they obey some reasonable physical conditions:
such models must necessarily possess initial singularities.

A partial answer along these lines was previously given

by Vilenkin [5] who showed the necessity of a beginning
in a two-dimensional spacetime and gave a plausibility
argument for four dimensions. The broad question was

also previously addressed by Borde [6] who sketched a
general proof using the Penrose-Hawking-Geroch global
techniques. The proof given below will partly follow the
sketch outlined in that paper.

Statement of the result Aspacetime c.a—nnot be past
null geodesically complete if it satisfies the following con-
ditions: (A) It is past causally simple. (B) It is open.
(C) Einstein's equation holds, with a source that obeys
the weak energy condition (i.e., the matter energy density
is non-negative). (D) There is at least one point p such
that for some point q to the future of p the volume of the

difference of the pasts of q and p is finite.
Observe that geodesic incompleteness is being taken as

a signal that there is a singularity. (A geodesic is incom-

plete if it cannot be continued to arbitrarily large values

of its affin parameter. ) This is the conventional ap-
proach in singularity theorems.

It is worth noting that none of the standard singularity
theorems exactly fits the situation in which we are in-

terested: some of the theorems assume the strong energy
condition, known to be violated in inflationary scenarios,
and others place much stronger restrictions on the global
causal structure of spacetime than we do here [through
assumption (A)l.

More significantly, assumption (D) is entirely new —as

we shall see below, it captures a characteristic aspect of
future-eternal inflationary spacetimes.

Analysis of the assumptions —Before .we discuss the

assumptions in detail, here is a summary: Assumptions
(A) and (B) are made solely for mathematical conveni-

ence. The ultimate goal is to relax them [especially as-

sumption (B)]. Assumption (C) holds in standard infla-

tionary spacetimes, and is physically quite reasonable.
Assumption (D) is necessary for inflation to be future-
eternal.

In our detailed discussion of the assumptions, and in

the proof given below, we will need to use some of the
standard causal functions of the "global techniques" ap-
proach to general relativity. This is what we will need: A

curve is called causal if it is everywhere timelike or null

(i.e., lightlike). Let p be a point in spacetime. The
causal and chronological pasts of p, denoted, respective-

ly, by J (p) and I (p), are defined as follows: J (p)
=[q: there is a future-directed causal curve from q to p[,
and I (p) =[q: there is a future-directed timelike curve
from q to p[.

The past light cone of p may then be defined as
E (p) =J (p) —I (p). It may be shown [7] that the
boundaries of the two kinds of pasts of p are the same;
i.e., J (p) =I (p). Further, it may be shown that
E (p) CI (p). In general, however, E (p)~1 (p);
i.e.„ the past light cone of p (as we have defined it here) is

a subset of the boundary of the past of p, but is not neces-
sarily the full boundary of this past. This is illustrated in

Fig. 1.
With this background in hand, we may now discuss the

assumptions in greater detail.
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f. lG. l. An example of a spacetime that is not causally sim-

ple. The two thick horizontal lines are identified, allowing the
point q to send a signal to p as shown (along the curve y). The
boundary of the past of p then consists of more than just the
past light cone of p; i.e. , I (p) —E (p) is not empty.

FIG. 2. The volume of interest.

Assuntption (A): A spacetime is past causally simple if

E (p) =I (p)all for all points p. I.e., we exclude for

now scenarios such as the one in Fig. l.
Assumption (B): A universe is open if it contains no

compact, achronal, edgeless hypersurfaces. (A set is

achronal if no two points in it can be connected by a

timelike curve. )
Assumption (C): Einstein's equation is R,b

—
2 g, t, R

=kT,b (where R,b is the Ricci tensor associated with the

metric g,b, R the scalar curvature, T,b the matter
energy-momentum tensor, and k a positive constant in

our conventions). An observer with four-velocity V' will

see a matter energy density of T,b V'V . The weak ener-

gy condition is the requirement that T,b V'V ~ 0 for all

timelike vectors V'.
This is a reasonable restriction on spacetime. (In fact,

a much weaker integral condition will do just as well for

our purposes [8].) It follows by continuity from the weak

energy condition that T,bN'1V ~ 0 for all null vectors 8'
and from Einstein's equation that R,blV'W ~ 0. It is

this final form, sometimes called the null cont. ergence

condition, that we will actually use. (Thus our results

will remain true even in other theories of gravity, as long

as the null convergence condition continues to hold. )
Assumption (D): This condition was formulated [5] as

a necessary condition for inflation to be future-eternal.

Consider a point p that lies in the inflating region; for

inflation to be future-eternal there must be a nonzero

probability for there to be a point q, at a given timelike

geodesic distance 6 to the future of p, that also lies in the

inflating region. Since the boundary of a thermalized re-

gion is spacelike (and it lies to the past of points within

the region), it is not possible to send a signal from the in-

terior of a thermalized region to an inflating region.

Thus, if a point r lies in a thermalized region, then all

points to its future [i.e., all points in I+(r)] are also

thermalized. This means that there should be no

thermalization events in the region I (q) —I (p).
Now, the formation of thermalized regions is a stochastic

process, and it is reasonable to assume that there is a zero

probability for no such regions to form in an infinite

spacetime volume. This leads to assumption (D) [9]. For
a more detailed discussion of assumption (D) see Ref.
[5].

Proof Suppo. —se that a spacetime that obeys assump-

tions (A)-(D) is past null geodesically complete. We

show in two steps that a contradiction ensues.

(I) A point p that satisfies assumption D has a finite

past light cone. By a "finite past light cone" is meant a

light cone E (p) such that every past-directed null geo-

desic that initially lies in the cone leaves it a finite affine

parameter distance to the past of p.
Suppose, to the contrary, that a null geodesic y lies in

E (p) an infinite afline parameter distance to the past of

p. Let i be an affine parameter on y chosen to increase to
the past and to have the value 0 at p. Consider a small

"conical" pencil of null geodesics in E (p) around y.

Vary this pencil an infinitesimal distance h, in the future

time direction so that the vertex is now at the point p'.
This sets up a congruence of null geodesics; let N' be the

tangent vector field to these geodesics. (See Fig. 2.)
How do the null geodesics in this congruence move

away from or towards y~ If one considers a "deviation

vector" Z' that connects points on y to points on nearby

geodesics [7], a straightforward calculation yields the re-

sult that the only physically relevant variations in Z'
come from its components in the spacelike two-space in

E (p) that is orthogonal to lV' [10].
This means that the volume of the spacetime region oc-

cupied by the geodesic congruence may be expressed as

oo

6V =A„A(i )dv,4 0

~here A(i ) is the area of the spacelike cross section of

the light cone orthogonal to %'. The region ~hose

volume we are calculating is a subset of I (q) —I (p)
(i.e., the closure of the difference of the pasts of q and p)
and it must thus have a finite volume. In order for this to

happen, A must decrease somewhere along y.

The propagation equation for A is [7]
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where a dot represents a derivative with respect to i and

0=a,N' is the divergence of the congruence. If A de-

creases it follows that 0 must become negative. But the

propagation equation for I) may be written as [7]

0~ ——'O' —R bN'N ~ ——'0'
[where we have used assumption (C) in the last step]. If
0&0 somewhere, it follows that 0 —~ within a finite

a%ne parameter distance.
The divergence of 0 to — is a signal that the null

geodesics from p have refocused. It is a standard result

in global general relativity [7] that points on such null

geodesics beyond the focal point enter the interior of the

past light cone [i.e., enter I (p)] and no longer lie in

E (p). Thus the null cone E (p) must be finite in the

sense defined above.
(2) The result of step (I) contradicts assumption (8).

From causal simplicity it follows that E (p) [being

equal to the full boundary of the past of p, I (p)) is an

edgeless surface. It is also achronal. [If two points on it

can be connected by a timelike curve, then the pastmost
of the two points will lie inside I (p), not on its bound-

ary [7].] And step (I) implies that E (p) is compact.
These three statements taken together contradict assump-

tion (B).
Discussion. —The conclusion to be drawn from this ar-

gument is that inflation does not seem to avoid the prob-
lem of the initial singularity (although it does move it

back into an indefinite past). In fact, our analysis of as-

sumption (D) suggests that almost all points in the
inflating region will have a singularity somewhere in their
pasts. As with most singularity theorems, our analysis
tells us nothing about the nature of the singularity or
about its precise location. In particular, we cannot tell

whether or not the singularity occurs on a spacelike sur-

face, like the big bang singularity of the standard
Robertson-Walker cosmology. However, the fact that
inflationary spacetimes are past incomplete forces one to
address the question of what, if anything, came before.
The most promising way to deal with this problem is

probably to treat the Universe quantum mechanically and

describe it by a wave function rather than by a classical
spacetime.

The theorem that we have proved in this paper is based

on several assumptions which it would be desirable to fur-

ther justify or relax. The principal relaxation that is

necessary is in assumption (B); i.e., closed universes must

also be accommodated. It may appear at first sight that
this will be difficult to achieve since assumption (B) en-

tered into the proof above at a crucial place. However,

all that we really need is to exclude situations where null

geodesics recross after running around the whole Uni-
verse (as they do in the static Einstein model). If the
reconvergence of the null cone discussed above occurs on

a scale smaller than the cosmological one, then essentially
the same argument goes through. This approach to ap-

plying open universe singularity theorems to closed
universes has been outlined previously by Penrose [I I]
and it will be discussed in detail separately as will the re-

laxation of assumption (A).
Assumption (D), which plays a central role in our ar-

gument, requires further justification. It rests on the as-

sumption that the probability of finding no thermalized

regions in an infinite spacetime volume vanishes. The as-

sumption is plausible, and in the original inflationary
scenario [12,13], it is known to be true. It would be in-

teresting, however, to determine the exact conditions of
validity of assumption (D) and to investigate the possibil-

ity of relaxing it.
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