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Light Deflection in Perturbed Friedmann Universes

Ruth Durrer
Universitat Ziirich, Institut fur Theoretische Physik, Winterthurerstrasse 190, CH 805-7 Zurich, Switzerland

(Received 5 January 1994)

A new formula for light deflection is derived using only physically observable concepts. The
general result is specialized to cosmological perturbation theory and expressed in terms of gauge-
invariant perturbation variables. The resulting scalar, vector, and tensor equations are supplemented
by simple examples for illustration. The gravity-wave example may be of more than academic
interest and even represent an alternative way to detect gravitational waves.
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The propagation of photons in a perturbed Friedmann
universe leads to perturbations in the cosmic microwave
background which have been detected recently, and to
perturbations of light from distant sources like quasars.
Several formulas to calculate the perturbation of photon
energies (Sachs-Wolfe effect) have been derived so far [1].
In this Letter, we investigate in general the deflection of
light in the framework of cosmological perturbation the-
ory. A formula equivalent to our result (12) for scalar
perturbations is derived in [2], where the influence of
gravitational lensing on small angle fluctuations of the
cosmic microwave background is discussed [3].

On large scales the geometry of our Universe can be
approximated to a precision of about 10 s by a homoge-
neous and isotropic Friedmann-Lemaitre spacetime. De-
viations from homogeneity and isotropy may thus be
treated in first order perturbation theory. Cosmologi-
cal perturbation theory was first investigated by Lifshitz

[4]. Since only the perturbed geometry is physically ob-
servable, the choice of a background universe on which
perturbations are defined is somewhat arbitrary and is
called a choice of gauge. Only quantities whose back-
ground contributions vanish are gauge independent [5].
Physically measurable quantities can always be expressed
in terms of such gauge-invariant variables, which usually
have a simple geometrical meaning [6].

We therefore derive a formula for light deflection in
terms of gauge-invariant variables. Throughout, we
choose the metric signature (—,+, +, +).

On their way from the last scattering surface into our
antennas, microwave photons travel through a perturbed
Friedmann geometry. Thus, even if the photon temper-
ature was completely uniform at the last scattering sur-
face, we receive it slightly perturbed. In addition, pho-
tons traveling through a perturbed universe are deflected.
We now calculate this deflection in first order perturba-
tion theory.

Metrics which are conformally equivalent, ds = a ds,
have the same lightlike geodesics; only the correspond-
ing affine parameters are different. Since Friedmann-
Lemaitre models are conformally flat, we may thus dis-
cuss the propagation of light in a perturbed Minkowski
geometry. This simplifies things greatly. We denote

where the integral can be performed along the unper-
turbed photon trajectory from some initial spacetime
point p; to the end point pI. On the right hand side,
unperturbed values for n" can be inserted. Starting from
this general relation, one obtains the Sachs-Wolfe efFect

by discussing the perturbation of n u, where u is the
four-velocity of an observer [1,5,7).

The direction of a light ray with respect to an observer
moving with four-velocity u is given by the direction of
the spacelike vector

n(s& = [n+ (u n)u]/[u n~, (2)

which lives on the subspace of tangent space normal to
u. We now want to define the deflection of a light ray.
At the point of emission, the photon direction as mea-
sured by an observer moving according to the velocity
field u is given by n(s&(p, ). Correspondingly, at the point
of detection it is given by n(s&(p/). We have to com-

pare these two vectors at different points. We do not
want to switch off the perturbation, since this is not a
gauge-invariant concept. (There exist difFerent averaging
procedures, e.g. , over different spacelike hypersurfaces,
which lead to slightly different Friedmann backgrounds.
Actually the difference in the obtained backgrounds can
be of the same order of magnitude as the amplitude of
the perturbations [5].) We thus let the observer trans-
port their frame of reference from the point of emission
to the point of detection and compare the direction of
n(s&(pI) with respect to the transported frame.

We do not want to restrict the observer to move on a
geodesic. The correct way to transport a direction along

the afline parameter by A and the tangent- vector to the
geodesic by n = dx/dA, n = 0, with unperturbed values
no = 1 and n~ = 1. The tangent vector of the perturbed
geodesic is given by (1,n) + Sn. The geodesic equation
for the metric

ds = (r& „+h, )dz dx"

yields to first order in h„„
p,o f
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a nongeodesic curve is Fermi transport (see, e.g. , [8]).
The Fermi transport equation is given by

V„n(z) ——(n(s) V„u)u .I I I I

6(n(&)) = n'(h, p + v, )
o

f
dt(hgo, { —h(p, g)n

I

(7)

Here, we denote by n~3~ the transported direction of emis-

sion which coincides with nc3~ at the point of emission.
This equation is uniquely specified by the requirement
that Fermi transport should conserve scalar products
with u and scalar products of vectors normal to u. There-
fore, angles and lengths in the subspace of tangent space
normal to u are conserved.

If an observer Fermi transports their frame of reference
with respect to which angles are measured, they consider

a light ray as not being deflected if n(s}(pf) is parallel to

n(3) (pf ) . The difference between the direction of these
two vectors is thus the deflection,

(t)e = n(s) —(n(s) n(s))n(s) (pf) .II (4)

n = (1,n)+bn with n = 1,
u = (1,0) + 6u = (1+ -hpp, v),

n(s} = (0) n) + bn(s} q

and

n(s) —(O, n) + bn(s) .II II

The perturbation bn is given in (1). From (2) we obtain

bn(s) = ~u + ~(0, n) + bn —bu,

e = [n'v' —bn + g hoo + n'h'o] .

The Fermi transport equation (3) yields

Here e is a spacelike unit vector normal to u and normal

to n(s) which determines the direction of deflection and {t

is the deflection angle. [Note that (4) is a general formula

for light deflection in an arbitrary gravitational field. Up
to this point we did not make any assumptions about
the strength of the field. ] Clearly, due to this definition,
the deflection angle will in general depend on the path
which the observer chooses to move from p, to pf. But
we shall see in the following that, at least in eases where

the gravitational field originates from a spatially confined

mass distribution, the observer can always move on a
path far away from all masses, so that the path dependent
contribution becomes negligible.

For a spherically symmetric problem, e is uniquely de-

termined by the above orthogonality conditions since the
path of light rays is confined to the plane normal to the
angular momentum. In the general case, when the angu-

lar momentum of photons is not conserved, e still has 1

degree of freedom. We now calculate (te perturbatively.
Let us define the perturbed quantities:

Inserting (5)—(7) into (4) leads to

with

(te =0, j&e' = 6' —(6 ~ n)n',

f
6, = [bn, —v, + —,'h, ),n"]I, + — (ho, , ),

—ho), , )n'dt .

This quantity is observable and thus gauge invariant.

The last integral has to be performed along the path
of the observer. For a finite mass distribution, at dis-

tance R away from all masses, h, o & MjR; therefore

hp, ,~ & M/R2. On the other hand, the length of the

path is of order R, so that we find

(hp, ,),
—hp), , )n" dt &

The observer can thus always choose a path far away from

the mass distribution so that this term can be neglected.
We now want to express the general formulas (8) and

(9) in terms of gauge-invariant variables for scalar, vec-

tor, and tensor type perturbations. The most general

form for scalar perturbation of the metric is given by

(h )=I( 2B„2(HI, —
s EH)6, , + 2H„~ ) (10)

(bg)(" = I;gI, +
f

(C —4), dA .

For spherically symmetric perturbations, where e is

uniquely defined, we ean write this result in the form

~{s) +.e If + (C —C),e*dA .

The first term here denotes a special relativistic spheri-

cal aberration. The second term represents gravitational

light deflection, which, since it is conformally invariant,

only depends on the Weyl part of the curvature. For
scalar perturbations, the amplitude of the Weyl tensor is

proportional to 4 —C [5,6].
Neglecting the spherical abberation we obtain in the

Newtonian limit

and a scalar velocity field can be derived from a potential,

v, = —v„. One can show that the following combinations

of these variables are gauge invariant [7,9,10]:

V = v —H, 0 =A+H —B, C =HI, —,'H. (11)—
The variables C and @ are the so-called Bardeen po-

tentials. In Newtonian approximation with Newtonian

potential y one finds O' = —C = p . With ansatz (10)
Eq. (9) leads to
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f
Pe = eoui —e;„=—2 V~&pdA, (14)

The most general ansatz for vector perturbations is

which corresponds to Eq. (4.19) of Ref. [11], leading di-
rectly to the usual lens equation [11]. As an easy test
we insert the Schwarzschild weak field approximation:
@ = —4 = GM—/r. The unperturbed geodesic is a
straight line, x = (A, nA + eb), where b denotes the im-

pact parameter of the photon. Inserting this into (13)
yields Einstein's well known result, P&sl = 4GM/b

0 2B;
2B H, +Hi ij+ ji J

(15)

O, =v; —B;, o;=H, —B;.
Inserting these definitions into (9), we obtain

where B,, H;, and v; are divergence free vector fields.
The following combinations of these variables are

gauge invariant [5,10]:

f
(b, )&v& = n, I~ —— (~,,~

—~i, ,)n"dt+ ~i, ,n"dA (17)

This result can be expressed in three dimensional notation as follows:

f f
pe = 6 —(b n)n = —(0 A n) A n], + — (V. A o ) A n dt — [V(o"n) A n] A n dA .

2

The first term is again a special relativistic "frame
dragging" effect. The second term is the change of frame
due to the gravitational field along the path of the ob-
server. The third term gives the gravitational light de-
flection. (Special relativistic Thomas precession is not
recovered in linear perturbation theory since it is of or-
der vz. )

This formula can be used to obtain in first order the
light deflection in the vicinity of a rotating neutron star
or a Kerr black hole. In suitable coordinates the metric of
a Kerr black hole with mass M and angular momentum
Ma can be approximated by [8]

fo 0)(P.)=10 H (22)

Only for extreme Kerr and very close encounters (where
linear perturbation theory is no longer valid since b ~
GM), the vector contribution is of the same order of
magnitude as the scalar term. For usual circumstances,
a (( b, the fact that the direction differs from e might
open the possibility of actually observing the vector con-
tribution.

Tensor perturbations of the metric are of the form

gpp= —(1 —2m/r) + G(r ),

gp, = 2e,,i,s'x"/rs+G(r s),

g,~
= 6,~ (1 —2m/r) + G(r ),

(is)

(19)

where H,~ is a traceless divergence free tensor field. The
deflection angle then becomes

with m = GM, s = GMa, and Ia] ( GM (Ia] = GM
represents the extreme Kerr solution). Therefore,

O' = B= (2/r )s—A r . — (2o)

We consider an observer which emits a light ray with
impact vector be in direction n at infinity and detects
it at infinity on the other side of the black hole. The
observer moves to the point of detection in a wide circle
around the black hole, so that the contribution from the
path of the observer can be neglected. Light deflection is
then given by

Only the gravitational efFects remain. The first contri-
bution comes from the difFerence of the metric before
and after passage of the gravitational wave. Usually this
term is negligible. The second term accumulates along
the path of the photon.

It is well known since the work of Bondi et aL that
gravitational waves do deflect light and can thus act as
gravitational lenses [12]. Here, we evaluate (23) for a
gravitational wave pulse for which the difference of the
gravitational field before and after passage of the pulse
is negligible:

(a A n+ 2[(a A n) e]e).v 4a
(2i) f

Pe, = (Hii, v +His'n, )n"n' dA . (24)
The size of the deflection angle is thus of the order

(a/b)1$&s&1 and is limited by

= —14'"
Ib~ b

During the crossing time of the photon, we approximate
the pulse by a plane wave,

H, i = R(~, i exp[i(k ~ x —u)t)]] with e,ik' = ~', = 0 .
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For a photon with unperturbed trajectory x = (A, xo + An), we find the deflection angle

fk —con]
&t~n n cos[ck + (k rl, —w)t]

u) —k. n
0

for k P~n
for k =~n.

Setting n = (p/u)k+qn~ with n~z ——1 and p2+q2 = I,
we haver~ n n = q t ~, where t ~ ——e,~n&n&. Inserting
this above, we obtain

P = e~ v 2(1+p) gl —pcos[a. + a(p —l)t] . (25)

The amplitude of the gravitational wave determines e~
and p is given by the intersection angle of the photon
with the gravitational wave as explained above.

This eKect for a gravitational wave from two coa-
lescing black holes would be quite remarkable: Since
for this (most prominent) event e~ can be as large as
= 0 1(R,/. r), light rays passing the black hole with im-
pact parameter b would be deflected by the amount

P —2"(10 Rs/b) .

Setting the source at distance dl, s from the coalescing
black holes and at distance ds from us, we observe a
deflection angle

P = Pd~s/ds .

The best source candidates would thus be quasars for
which dl.s/ds is of order unity for all coalescing black
holes with, say, z ( 1. In the vicinity of the black holes
(r ( 10Rs), linear perturbation theory is of course not
applicable. But in the wide range 10 Rg & b & 10Rg
for radio sources, and 104Rs ) b ) 10Rs for optical
sources, our calculation is valid and the result might be
detectable.

A thorough investigation of the possibility of detect-
ing gravitational waves of coalescing black holes out to
cosmological distances by this effect may be worthwhile.
The effects of light deflection and lensing by gravitational
waves have also been considered in [13].

We have defined light deflection in a gauge-invariant,
operational way. In general, the result depends on the
path along which the observer transports their frame of
reference from the point of emission to the point of detec-
tion. Our equations are derived in perturbed Minkowski
space, but since Friedmann-Lemaitre universes are con-
formally Bat, they also apply for them. In a K = 0
Friedmann model our main results [(12), (17), and (23)]
are directly valid in conformal time. For K = +1 a con-
formal coordinate system has to be adapted.

More applications of light deflection can be found in
a review paper on cosmological perturbation theory [5].
There the formulas derived in this Letter are used to
discuss gravitational lensing by topological defects.
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