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Colliding Black Holes: The Close Limit
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The problem of the mutual attraction and joining of two black holes is of importance as both a
source of gravitational waves and as a testbed of numerical relativity. If the holes start out close
enough that they are initially surrounded by a common horizon, the problem can be viewed as a
perturbation of a single black hole. We take initial data due to Misner for close black holes, apply
perturbation theory, and evolve the data with the Zerilli equation. The computed gravitational
radiation agrees with and extends the results of full numerical computations.

PACS numbers: 04.30.Db, 04.25.Dm, 04.70.Bw

The collision of two black holes is, in principle, one
of the most efficient mechanisms for generation of grav-
itational waves. In view of the fact that the LIGO and
VIRGO [1] detectors may be detecting events in the com-

ing years, the theoretical determination of possible wave
forms has become of great importance. The fact that
data may be well below the noise level of the detectors
may require pattern-matching techniques [2] which re-
quire accurate knowledge of radiation wave forms.

The problem of the gravitational radiation generated
by colliding black holes is not only of great importance
to gravitational wave astrophysics, it has also been one
of the earliest applications of numerical general relativ-
ity. Smarr and Eppley [3,4], more than 15 years ago,
computed the radiation wave forms for the axisymmet-
ric problem of two holes, starting from rest and falling
into each other in a head-on collision. The importance
of this problem has motivated a recent reconsideration,
both numerical and analytical, by Anninos et aL [5]. The
numerical work is difficult, especially when the holes are
initially close together. In that case the radiation is domi-
nated by horizon processes. In addition, for initially close
holes the radiation generated is relatively small and the
numerical errors in its computation can be particularly
troublesome. The purpose of this paper is to provide a
method of computing the radiated power generated when
the holes start off close together. Our method is based on
perturbation theory and is considerably more economical
than a full numerical simulation. It can also be viewed
as a benchmark against which numerical codes can be
checked.

For a full numerical computation of the problem, data
used are those for the two throats of a momentarily static
"wormhole, " for which an analytic solution was given by
Misner [6]. The initial data have a parameter iso which
can be adjusted so that the initial conditions correspond
to different values of I/M, where L is the initial separa-

tion of the throats, and M is the mass of the spacetime.
For values of tse corresponding to large and moderate

starting values of L/M the motion of the "particles, " not
their black hole nature, is crucial to the generation of
gravitational radiation. In this case the amount of radia-
tion emitted can be understood with a quasi-Newtonian
approximation that starts with the known radiation for
a point mass falling into a hole [5]. For values above
around pe —2, this quasi-Newtonian approximation is in
remarkably good agreement with the results of numeri-
cal relativity. For smaller values of p,e, however, the ap-
proximation seriously overestimates the radiation. When
the throats start off at small separation their "internal"
structure cannot be ignored.

It is our purpose here to provide an understanding of
the opposite limit, the limit of small pe (and hence small

L/M)). Below we give a simple and attractive analytic
result valid in the limit of small separation for the en-
ergy radiated. A rather complete understanding of the
phenomenon is then afforded by this result along with
the quasi-Newtonian estimate, and the bridge between
the two given by the numerical relativity computations.
In addition, our method gives predicted wave forms, and
other features of the wave, that can be useful for verifying
the accuracy of the numerical relativity computations.

It should be understood that our small-pe result does
not have the same robust connection with a simple phys-
ical picture as the quasi-Newtonian approximation has
with the mutual in-fall of two holes from large distance.
In the large distance limits the details of the choice of
initial data to represent the individual holes is unimpor-
tant; it is their particlelike motion toward each other
that dominates the radiation. For the initially close limit
the Misner data are one possible choice for momentar-
ily static initial conditions, but they are singled out by
mathematical convenience, not by any claim that they
represent the most natural, instantaneously stationary,
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initial distortion of the participating throats.
In terms of bispherical coordinates p, g, P, the Misner

initial data [6] take the form

dsM;»« ——a &pM;»«dp +dr/+sin Tidp, (1)
where a is a constant with the dimension of length, and

n=+oo
1

PMisner = ) (2)
/cosh(p + 2'App) —cos T/

We now change from bispherical to spherical coordi-
nates R, 8, P and introduce a Schwarzschild radial coor-

2
dinate T through R = (T ~ + v'T —2M) to arrive at a
line element of the form

dsM —F(T, 8; pp) + T dA
1 —2M T

( »+ —).2R,i B 2 2 2
rL=p sinhnyp 1+2G/RcothAppcos8+az/Rzcoth nyp)

EI,(yp) = ) (sinhnpp)- 4

The square root in the summation has the form of the Here, and below, we use the notation
generating function for the Legendre functions Pr(cos 8),
so that F can be expressed as

2 f'Ml +
F = 1+, ) ~g

l

—
t Pr(cos&)1+M/2R ( R)

with

1 (cothnpp)~

[4gi(+p)]~+i sinh npp

(5)

(6)

Since the Misner geometry satisfies the initial value
equations of general relativity, and is momentarily sta-
tionary, there exists a coordmate choice T, T, 8, $ such
that the initial data generate a 4-geometry at T = O

of the form dsz = dT + —dsM;»«, and for which

gg„„/gT = O at T = 0. One can make a transforma-
tion such that the 4-geometry takes the form

d,T
l
&&'+F(,8;Po) M + '&fl' +&(&').

T ) 1 —2M T

In this spacetime the initial data are the Misner geome-
try, and the initial perturbations are contained in the de-
viations of the Misner geometry from the Schwarzschild
initial geometry. All of the information about those de-
viations is contained in F and in how it difFers from its
Schwarzschild form, unity. If F —1 is initially small,
the evolution of the spacetime can be viewed as a prob-
lem in the dynamics of Schwarzschild perturbations and
therefore one is guaranteed to have small perturbations
forever.

We have therefore cast Misner's initial data in
Schwarzschild coordinates. We now need to explore the
limit in which the two black holes are "close." When

yp ( 1.36 an apparent horizon at R = 2M surrounds
both throats. As pp decreases further, the value of L/M
decreases, and hence the ratio of L to the horizon radius
decreases. As pointed out by Smarr the horizon, and the
geometry outside it, should then be nearly spherical, and
it is o'nly the geometry outside the horizon that influences
the radiation sent outward to infinity. Linearized pertur-
bation theory should therefore give a good description
of the generation of radiation (though not of the highly
nonspherical geometry inside the horizon).

To give this picture a mathematical realization we note
that the coefficients in (5) then have the small-p, p limit

((~+ 1)
(4I »S oI)'+'

In the spacetime corresponding to (5) we can therefore
consider e = 1/l ln ppt to be an expansion parameter. If
in (5) we keep only the leading term in e for each E we

get

+T dA
1 —2M T

We now argue that each multipole term can be treated
individually by linearized perturbation theory. This is

clearly true for the 8 = 2 case. To lowest order in e, that
is to order t 3, the field equations contain only terms linear

in the perturbation (i.e. , linear in 1 F), and those term—s
are pure E = 2. Next consider, for example, expansion to
order ~7. This would contain E = 6 terms linearly, but
would also contain nonlinear terms, e.g. , from the square
of the l = 2 term [with higher order corrections to (9)
included]. But the nonlinear contributions can have no
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E = 6 part. (To get an f = 6 term requires a cube of an
t' = 2 term, or a product of t' = 2 and / = 4, both of
which are higher order ln c.) This shows that the E = 6
part of the vacuum Einstein equations is linear in 1 —I',
and hence can be treated by linear perturbation theory.
This argument easily generalizes to arbitrary /.

Though each of the E poles in (10) satisfies the lin-

earized sourceless Einstein equations, they are not all the
same order in e. We take up here only the dominant term
at small initial separation, the pure quadrupole l = 2

term. To treat this as a perturbation problem, we use
the notation and formalism of Cunningham et al. [7] ex-
cept that we will omit the tildes over variables; equations

M3

8Rs (1+M/2R)
'

~~(~) + ~s(uo)
Ã~(~)]'

from that paper will be cited as "CPM." It is important
to note that the formulas in that paper, based on the
work of Moncrief [8], are gauge invariant, so we need pay
no attention to the coordinate gauge of (10).

From CPM (II-25),(II-26), we find that the only non-
vanishing metric perturbation functions are Hq ——K =
g(r)p(yo) where [with the notation of (7)]

q 2 l(1 2M~I' g
r p 1 —2M/r

1 d t rg + 6rg,
gl —2M/r « ~pl —2M/r)

(12)

and, following CPM (II-31), we define

(4w Q,
(13)

where A
—= 1+ s2„.The function Q then satisfies the 8 = 2 Zerilli equation [9]

82$ 82$ t' 2M' 1 QMs 3M f' 3M) 6+I 1—
l
1— =0

Bt2 Br, ( r j A 2rs r ( r ) rA (14)

'8
Power =

348m Bt (15)

= r + 2Mln( ' —1). [It is worth noting
that the function Qs of CPM (II-28), calculated from
our perturbations (12), explicitly solves the initial value
constraint Q2 = 0 as given in CPM (II-29)].

The form of g given by (12) and (13) is now taken as
initial data along with the initial condition 8$/Bt = 0 at
t = 0. The problem is greatly simplified by the fact that
the only po dependence is contained in the multiplica-
tive factor p(po). Since the initial data are proportional
to p(pQ), it follows that the evolved wave form Q is pro-
portional to p(pp), and the radiated power and energy
are proportional to [p(pp)]2. It is only necessary, there-
fore, to do one computation of the evolved wave form
and radiated power. The ps dependence is known at the
outset.

The initia1 form of g [with p(pp) set to unity] is
shown in Fig. 1. We evolved these data numerically with
the Zerilli equation (14). The resulting wave form, at
r' = 200 (we use units in which 2M = 1), as a func-
tion of t, is shown in Fig. 2. It clearly exhibits quasi-
normal ringing and power-law tails corresponding to a
quadrupolar perturbation. The values of the quasinor-
mal frequencies [10] and power-law exponents [ll] are in

excellent agreement with theoretical values. From the
evolved data we compute the radiated power, which is
given by CPM (III-28),

Energy/2M = 3.07 x 10 sp(~)s . (16)

This result is displayed in Fig 3, wher. e it is compared
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FIG. 1. The function @of the Cunningham-Price-Moncrief
perturbation scheme for Misner's initial data. The values
shown are for y(pp) = 1, and for units in which 2M = 1.
For the r coordinate the horizon is at r = —oo and r r
for large positive values.

I If p(pp) is set to unity, this procedure gives a computed
energy of 3.07 x 10 s. The resulting energy, as a function
of ps, is therefore
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FIG. 2. Time evolution of the Misner initial data [with

p(po) = 1, 2M = 1], from the point of view of an observer
fixed at r' = 200. We see the appearance of quasinormal ring-

ing with the predicted period of 8.4. In the inset we display in

a log-log plot the late time behavior of the Geld, which clearly
exhibits a power-law tail form with exponent —6 as predicted
by theory.
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FIG. 3. The solid curve is the prediction for the radiated
energy, as a function of p,p, based on linearized perturbation
theory as developed in this paper. The black dots correspond
to the values of full numerical relativity and the dashed curve
corresponds to a far approximation (Anninos et al [5] an. d
private communication) .

with the numerical results reported by Anninos et al. [5].
It is intriguing that the remarkable agreement extends
considerably beyond the small-pp region in which our
approximation is expected to be applicable.

The general method is suited to a fairly wide variety of
initial data. This paper only concentrated on the aesthet-
ically elegant Misner data as an example. The method
can also be applied to initial data which are known only
in numerical form and which represent perturbations of
a black hole. To do this would require considerably more
numerical analysis than for the Misner initial data but,
when applicable, would be much quicker and less expen-
sive than the fully numerical methods for integrating the
nonlinear field equations.
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