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We present a new methodology for deriving physically important exact solutions of certain nonintegra-
ble equations. These solutions describe the nonlinear interaction of traveling waves. Examples include

multishock and multisoliton solutions.
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There exist physically significant nonlinear evolution

equations, which although nonintegrable, posses exact
solutions describing the interaction of two traveling wave

solutions. An example is the Fitzhugh-Nagumo (FN) [I]
(or real Newell-Whitehead [2], or Kolmogorov-Petrov-
sky-Piscounov [3]) equation,

u, =u„„+u(l —u)(u —y) .

This equation admits a "two-shock" solution which de-

scribes the interaction of two waves traveling with speed
+ (2y —

I )/v 2 and + (2 —y)/v 2 [after interaction,
these two waves coalesce and produce a wave traveling

with speed + (I + T)/J2].
Here, we introduce a new method for both deriving

nonintegrable equations admitting such solutions, as well

as constructing the correpsonding solutions. Our method

is based on (a) the introduction of a new type of symme-

try, which we call generalized conditional symmetry; (b)
a new mathematical characterization of multishock and

multisoliton solutions.
We construct nonintegrable equations admitting mul-

tishock or multisoliton solutions, by using integrable
equations together with certain of their generalized con-
ditional symmetries. Therefore, the origin of the exact
solutions admitted by these nonintegrable equations can
be traced back to their relationship with integrable equa-
tions, and can be thought of as remnants ofintegrability

We will illustrate our method by discussing classes of
nonintegrable equations, which are constructed with the
aid of the Burgers, the Korteweg-de Vries (KdV), and

the modified KdY equations.
We first introduce the concept of generalized condi-

tional symmetries: The function o(u) is a generalized
conditional symmetry (GCS) of the evolution equation

u, =K(u), if

K'cr —a'K =F(u, cr), F(u, 0) =0,
where K(u) and o(u) are differentiable functions of
u, u„, u„„, . . . and F(u, o) is a differentiabie function of
u, u, u„„.. . and of a, e„,cr, . . . . The prime denotes the
Frechet derivative, i.e,

( ) tIO'+ 8(s
~ + 80'

|Iu 8u 8u

If F(u, a) =0, then Eq. (I) reduces to the definition of a
generalized symmetry [4]. The concept of a conditional
symmetry was introduced in [5] under the name of non-

classical symmetry. Generalized conditional symmetries
are generalizations of conditional symmetries, in the same
way that generalized symmetries are generalizations of
sym metrics.

The usefulness of this definition follows from the fact
that it implies that the equations u& =PC and a=0 are
compatible. Therefore, in general, they share a common
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manifold of solutions. To obtain these solutions one first
solves the ordinary differential equation (ODE) a =0 to
obtain u as a function of x with some x-independent in-

tegration constants. One then substitutes this function in

the evolution equation u, =K to determine the time evolu-
tion of these constants. This procedure is precisely the
same as the one used for obtaining invariant solutions [6].
We will show that a multishock or a multisoliton solution
can be characterized by an ODE a =0, where o. is a GCS
of the integrable equation under consideration.

It also follows from the definition the following impor-
tant fact: If a is a GCS of the equation u, =K(u), and if
G(M, O) =0, then a is also a GCS of the equation

u, =K(u)+G(u, o). (2)

Furthermore, all these equations share with equation
u, =K(u) the common manifold of solutions obtained
through the GCS 0.

Equation (2) implies that the question of constructing
nonintegrable equations possessing certain exact solutions
reduces to the question of constructing a GCS for some
member of the class of equations contained in (2). For
integrable equations it is possible to construct GCS in a
systematic way. In this Letter we use two methods for
constructing GCS. One uses Backlund transformation
and the other uses a certain reduction of the stationary
hierarchy associated with the given integrable equations.

(i) We first discuss the nonintegrable equations con-
structed from the Burgers hierarchy. This hierarchy is
defined by

M

u, = g a a„(a„—u)™u, M CZ+,
m 0

(3)

After integrating once, this equation becomes

u,„—3uu„+u +ci(u„—u )+c2u+c3=0. (5)

The left-hand side (LHS) of Eq. (4) is a symmetry of
Burgers equation. It can be verified that the LHS of Eq.
(5), which will be denoted by a, is a GCS of Burgers
equation. Therefore, the entire class of Eq. (2), where
K =u„„—2uu„and a is the LHS of Eq. (5), shares the
two-shock solution,

= —[I [K ""' '+K """'+K,""'&']]

where a0,al, . . . , aM are arbitrary constants. Equation
(3) with m = I, a0=0, ai = I is Burgers equation u,
=u„„—2uu„. The Burgers hierarchy is usually written
as u, =g -a@ u„, where %=a, —u —u„a„'. Using in-
duction it is easy to show that A a, =a„(a„—u)
which implies Eq. (3). For pedagogical reasons, we first
describe how to use Burgers equation to construct equa-
tions admitting a two-shock solution. It is well known
that the two-shock solution of the Burgers equation
satisfies a third order equation,

Mx+c l+Mx+c2Mx 0

with the Burgers equation. In this equation, Kl, K2, K3,
c],cp, c3 are arbitrary constants, and a],a2, a3 are the
roots of a +c]a +c2a+c3 =0, which are assumed to be
distinct. This class contains the following Interesting
equations:

u, =uu —u +au+p,

u, = —,
' u,„+—', ( —u +au+p),

u, =yu„„+(I —3y)uu„+(I —y)( —u'+au+P) .

(7)

(8)

These equations I'ollow from (2) by taking G(u, o)
= —o, —

& cr, (y —l)a, respectively. (In these equations

ci =0, c2= —a, and c3= —p. ) Equation (8) was studied

by Satsuma [7]. It is interesting to note that first order
partial differential equations (PDE's) like Eq. (6) can
also support two-shock solutions.

This result can easily be generalized to A'-shock solu-
tion. Actually the following is valid: The class of equa-
tions (2), where K is given by the right-hand side (RHS)
ol' Eq. (3) and o is defined by

IV+ l M

u = —'ln g K„expk„x — g a
n l m 0

M 6Z+.
In this equation, K l, . . . , KN+ l are arbitrary constants
and kl, . . . , kIv+l are N+ I roots of k +'+elk +
+cNk+cN+l =0. The derivation of this result can be
found in [8]. A simple consequence of this result is that
the lowest order PDE, other than a member of Burgers
hierarchy, which admits an JV-shock solution is the
(N —

I )st order PDE
IV —l

uf = am x
—u u —

aIV —lO.
m 0

For example, the equation

u, =uu„„—3u u„+u +ai(u„„—2uu„)+aou„

ci(M„„3MM„+u ) c2(M„M ) cpu c4,

admits a three-shock solution.
(ii) Now we discuss the nonintegrable equations con-

structed from the KdV hierarchy in the potential form.
This hierarchy is defined by

M

u, = g a % u„, & a„+8u„—4a„'u„„,
m 0

McZ+
where a0, al, . . . , aM are arbitrary constants. Equation
(9) with m =I, ao 0, ai =I, is the potential KdV equa-
tion u& u +6u . The two-soliton solution of this

a=(a, u)"u—+., (a. -u) "+ -+cNM+cN+1

(ci, . . . , cN+i are arbitrary constants), admits the N-

shock solution
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equation satisfies the fifth order ODE,

+cl@ux+c2ux =0. (lo)

The LHS of this equation is a symmetry of the potential
KdV equation. Actually, Eq. (10) contains the two-
soliton solution as a particular case. The most general
solution of Eq. (10) describes the interaction of two-
cnoidal ~aves. It is quite interesting that there exists a

second order ODE whose general solution is precisely the
two-so)iton solution. This ODE is given by

1 l
u, „— u„+2uu„+ —u +au++ =0.

2u 2 u

lt can be verified that the LHS of this equation, which
will be denoted by o, is a GCS of the potential KdV
equation. Therefore, the entire class of equations (2),
where I('=u„„„+6u„and a is the LHS of Eq. (I I),
shares the two-soliton solution,

c+x —(za —zc~ )ci( . -c+x+(2a —2(~ )c+l . c-x —(2a —2cI. )c ( -c x+(2a —2cI)c+K3e +K4e

and KiK2c+ =K3K4c —. This class contains the equa-
tions

with the potential KdY equation. In this equation, I('(,

K2, K3,a,p are arbitrary constants, where the a 's are arbitrary constants. The cases a„,
=8„, ( and a„, =b -( correspond to the modified KdV

2equation u, =u„„—6u u, and to the sinh-Gordon equa-
tion u, =

z sinh(2(1„'u), respectively. Using the Miura

transformation which relates solutions of this hierarchy to
solutions of the KdV hierarchy, it can be shown that the

u, =u, +2u u„—2au„+u +2au +2P two-soliton solution of the above hierarchy satisfies

and

uI = —2uu»+2u, —2u u„—2au, .

—4uu u„+2u„—2u u„+6u u

—2u —4k u„+8k u u„—4k u =0. (13)

These equations follow from (2) by taking G(u, o)
= —a„—(u„/u + u )o and —ox —(u„/u + 3u )(r, respec-
tively.

In the case of Burgers equation, it was possible to ob-
tain the GCS (5) by simply integrating Eq. (4). For the
case of the KdV, the GCS (11) can be obtained from
(Io) using the following two methods. First, starting
from the ansatz u,„+g(u,u„) =0 and using repeated
diAerentiation it is possible to show that this equation
yields (10) if g(u, u„) is the expression defined in Eq.
(11). Alternatively, Eq. (11) can be derived by using the
x part of the Backlund transformation of the potential
KdV equation [9].

Equation (I I) is Painleve 27 in the classification of
Gambier [10]. Under the transformation u =v„/v, it be-
comes the bilinear ODE

(,(,»
—

~ („'„+a(„'+p('=o.[

Differentiating this equation, we find the linear ODE

Hence, the entire class of equations (2), where K =u„„„
—6u u„and a is the LHS of Eq. (13), share the same
two-soliton solution of the modified KdV-sinh-Gordon
hierarchy. This class contains the equation

u( =2uu„, —u„—3u 4+4k u, —4k u

This equation follows from (2) by taking G(u, cr) =cr„/
(4uu„—2u,„).

We conclude with several remarks.
(I) An effective way of constructing GCS is to investi-

gate linear first order PDE's. For example, the require-
ment that

(r=ux„+(au)x+f(u), a=a(x, r),
isa GCSof

u(+(au) „=0
implies that f(u) is either linear or cubic in u, i.e.,

('xxxx + 2 a('xx + 2P(' (12a)
o =u„„+au„+ (a„+k ()u+ k2u

If u satisfies the potential KdV, then i also satisfies a
linear evolution equation

i'I +2i'„„+6ai =0. (12b)

The solution of the two linear equations (12), together
with u =( /( implies the two-soliton solution.

(iii) We now consider the modified KdV hierarchy

M2

u, = g a ((1„'—4(I„u(1 'u) u„,

M(, M26 Z+,

and a satisfies

a, —3a„+2aa~ =0, a„,—a»~+2a„+3k ia„=0,

u(x, r) =z„w(z),

( / ) (I/J2)x+ (3/2)(+ —(I/82)x+ (3/2)(+z x, t —cie c2e C3.

(14)

i e. , a = —3(Jk (/2)tanh [(Jk (/2)x+ v]. The solution
corresponding to this GCS can be obtained by noting that
the equation cr=O can be transformed to the elliptic
equation d w/dz =2w and hence can be solved explicit-
ly (for simplicity we assume k (

= I, k2 = —2),
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Using Eq. (2) with G(u, o) =cr, it follows that this solu-

tion is also a solution of the real Newell-Whitehead equa-
tion u, =u„„+u —2u . Indeed the solution u(x, t) given

by (14), where w(-) is the Jacobi elliptic function, was

lound in [I I].
(2) It turns out that the two-shock solution of the

Burgers' hierarchy and the one-soliton solution of the po-

tential Caudrey-Dodd-Gibbon-Sawata-Kotera equation,

ul + uglfyyy 30uyuy. y.y + 60ux3

are characterized by the same GCS. Indeed, using the

Backlund transformation of the above equation, it can be

shown that its one-soliton solution is characterized by

u„„—3uu„+u +)i. =0, which is a special case of Eq. (5)
[i 2].

!
(3) In this Letter we have mostly concentrated on

two-soliton solutions. It is of course possible to construct
eq uat ions possessing higher sol i tons. However, these
equations are more complicated. For example, it can be
shown [13] that the ODE

[(u, +u )„,+ah+bc+ca] —4[[(u„+u )„] +2abc]u
=0

~here a =u~+u —l.
[
—/. 2+/. 3, / [, / 2, / 3 are arbitrary

constants, and b, c are obtained from a by cyclic permuta-
tion of /

~ k2 l 3, characterized the three-soliton
solution of the potential KdV. Hence PDE's sharing with

potential KdV a three-soliton solution can be constructed.
(4) It is also possible using our method to construct

equations sharing with integrable equations other types of
solutions. For example, it can be shown [13] that the
solution describing the interaction between one soliton
and one cnoidal wave is characterized by the ODE

t)„!Ju„'„—(u„+k '+c) [u„„„+2u„'+4(k'+c)(u„—k')]] = —,
' u„„„+3u„'+2cu,-,

w here /. and c are arbitrary constants. Hence PDE's
sharing with potential KdV this type of solution can be

constructed.
(5) The concept of GCS provides a new analytical tool

of investigating both integrable and nonintegrable equa-
tions. The results of some of these investigations will be

presented elsewhere. We only note one such result. The
Burgers equation admits a conditional symmetry of the

type o =u„+u +a(x, t)u+p(x, t) if a and p satisfy

a, =a„„—2aa„+2P„, P, =P„—2a„P

These equations are linearizable: Let g be a solution of
Burgers equation. For a given g, let p satisfy the linear

equation

v&i =v&gz 2gv&g+ 2(gg +g )v&

Then, the solution of Eqs. (15) is given by a = —p„/v&

and p= —g„—g +gv&„/v&.
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