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The influence of particle interactions on the superparamagnetic relaxation time has been studied by
Mossbauer spectroscopy in samples of maghemite (y-Fe&03) particles with diA'erent particle sizes and

particle separations. It is found that the relaxation time decreases with decreasing particle interactions.
A new model for the influence of interactions on the superparamagnetic relaxation has been derived and
it is shown that this model can explain the observations.

PACS numbers: 75.60.3p, 76.80.+y

Ultrafine magnetic particles are of great interest be-

cause their properties diAer considerably & I om those of
the corresponding bulk materials [1]. At finite tempera-
tures particles with dimensions below about 10 nm often
exhibit superparamagnetic relaxation, i.e., fluctuations of
the magnetization vector among the easy directions of
magnetization [2]. Superparamagnetic relaxation is

currently studied by a number of experimental techniques
such as ac and dc susceptibility measurements [3-8],
neutron diA'raction [9], Mossbauer spectroscopy [6-8,10],
ferromagnetic resonance [11],and magnetic force micros-

copy [12]. Recently the possibility of observing macro-

scopic quantum tunneling of the magnetization in

ultrafine particles has attracted much attention [13].
Ultrafine magnetic particles are commonly found in.

for example, soils, rocks, and living organisms, and they
have many technological applications, e.g. , in magnetic
recording media, ferrolluids, and catalysts [1]. The fu-

ture development of new high-density magnetic recording
media containing still smaller magnetic particles may ul-

timately be limited by superparamagnetic relaxation,
which makes the particles unsuitable for the purpose. A

new and interesting application of superparamagnetic
particles is in materials for magnetic refrigeration well

above liquid helium temperature [14]. The magnetic

properties of the new nanocrystalline materials, prepared

by annealing of metallic glasses, may also be strongly
influenced by superparamagnetic relaxation [15]. Thus

the subject is of great technological importance.
The superparamagnetic relaxation time is normally ex-

pressed by

r = r oex p(AE/k T),
where ro is of the order of 10 ' -10 ' s [6-8] and de-

pends only weakly on temperature. hF. is the energy bar-
rier between two easy directions of magnetization, k is

Boltzmann's constant, and T is the temperature. For uni-

axial particles the magnetic anisotropy energy may be

written as E(8) =KVsin 0, where K is the magnetic an-

isotropy energy constant, V is the particle volume, and 0
is the angle between the magnetization vector and an

easy direction of' magnetization. In this case the energy

barrier equals Kt .

If a small magnetic field 8 is applied paralleI to the

easy direction of a ferromagnetic or ferrimagnetic parti-
cle with uniaxial anisotropy the energies at the minima at
0=0' and 0=180' will be diAerent and the transition

probabilities for the two opposite transitions will there-
fore also be diA'erent. Introducing h =@8/2KV, where p
is the magnetic moment of the particle, the two relaxa-
tion times can be written [16]

= r o exp(AE ——/k T ) .

where the energy barriers are given by 4E — =A'I'II. l

~ h)'-and rt)~ =rti(I —h ) (1+h) '. For h && I the

exponential gives the most important field dependence of

r —and one may then use the approximation T. o
—= ro.

Equations (1) and (2) were derived for noninteracting

particles. In practice, however, magnetic interactions be-

tween the particles are often significant and may even re-

sult in superferromagnetic ordering at low temperatures,
i.e., ordering of the magnetic moments of particles which

should be superparamagnetic if they were isolated

[10,17,18]. The calculation of superparamagnetic relaxa-

tion times in real systems of interacting particles is an ex-

tremely complex problem, even in the limit of weak in-

teractions. The relaxation times will depend on the de-

tailed geometrical arrangement of' the particles and on

the orientations of the easy directions of magnetization.
Numerical results have been obtained only for the case ot

two interacting particles with the easy directions paralle1

to the bond direction of the dipole pair [19]. For many-

particle systems only approximate expressions, based on

simple models, have been derived. Shtrikman and

Wohlfarth [20] suggested that Eq. (1) should be replaced

by the Uogel-Fuicher law„r = roexp[KV/k(T —To) I,
where To is a measure of the interaction efTect and is pro-

portional to the mean square dipolar field (8; ). Dor-

mann, Bessais, and Fiorani [5] later proposed another

model in which they calculated the interaction energy of

a particle with each of the neighbor particles separately.
The tota1 contribution of interactions to the energy bar-
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FIG. 2. Blocking temperature, deduced from Mossbauer

spectra, as a function of the average particle volume.
FIG. I. Mossbauer spectra of y-Fe203 particles dispersed in

polyvinylic alcohol. The volume weighted average diameter is
D 8.7 nm and the interparticle spacing is 5.2D (a) and 1.3D
(b).

rier was found by adding the individual contributions.
Both of these models predict an increase of the relaxation
time with increasing strength of the interactions.

The influence of interactions on the superparamagnetic
relaxation has been studied experimentally by use of
magnetization measurements [3-5,7] and Mossbauer
spectroscopy [7,10,17,18]. The blocking temperatures,
estimated by the two techniques, have in most cases been
found to increase when the average distance between the
particles decreases [3-5,10,17,18]. This can be explained
as freezing of the spins due to interactions [4,10,17,18].
Strong interactions are diScult to avoid because most
preparation techniques lead to broad particle size distri-
butions and large variations in particle interactions. Ex-
perimental studies of the detailed variation of the relaxa-
tion time as a function of the strength of the interactions
require samples with well-defined interparticle interac-
tions. Recently Prene er al. [7] have developed a
preparation technique by which the interactions can be
controlled. They varied the pH of a liquid in which
ultrafine maghemite (y-Fe203) particles were suspended.
In this way the surface electric charge at the particles,
which promotes interparticle electrostatic repulsions,
could be controlled. Solid samples with minimal aggre-
gation and with diA'erent average particle sizes and parti-
cle concentrations were prepared by adding a polymer
and drying the samples. By using this method a series of
samples have been prepared with volume weighted medi-
an particle diameters D between 3 and 11 nrn and with

average interparticle spacings (center to center) d=eD
with a=5.2 and 1.3.

Figure 1 shows Mossbauer spectra of concentrated and
dilute samples with D =8.7 nm at temperatures between
80 and 293 K. The spectra of both samples show a gra-
dual transition from a six-line (magnetically split) spec-
trum to a broad singlet and a quadrupole doublet as the

E =KVsin 8 —pB;(si 8cnsposin +cvs covs8)o. (3)

in the following we assume that h;=pB;/2KV« l.
Thus there wi11 be energy minima near 0 =0 and
0=180 . We have calculated the energy at the minima
and the maximum energy at the barrier (near 8=90').
For a particle at the minimum near 0=0 the energy
barrier which must be surmounted in order to reach the
minimum near 180 is given by

temperature is increased. This behavior is typical for
spectra of superparamagnetic particles [8,10,21]. The
blocking temperature Ta is defined as the temperature at
which the magnetically split and the unsplit components
have equal areas. This corresponds to the temperature at
which a particle with volume equal to the median of the
volume distribution has a relaxation time of the order of
the time scale of Mossbauer spectroscopy, r = 5&10
s. It can be seen in Fig. 1 that the blocking temperature
is higher for the dilute sample than for the concentrated
sample. The same behavior was found for the samples
with other median particle diameters. The blocking tem-
perature as a function of the median particle volume is

shown in Fig. 2. For all samples the relaxation is faster
in the concentrated samples than in the dilute samples.
This behavior is opposite to that predicted by the models
discussed above. We therefore have reconsidered the
influence of interactions on the relaxation time and have

developed a new model, which we show is able to account
for the experimental results.

We consider a particle i with magnetic moment p and
with uniaxial magnetic anisotropy. At a given instant of
time the particle is exposed to a dipolar field B;, which
has contributions from all the surrounding particles. B;
forms and angle v, with the easy direction of magnetiza-
tion, which defines the z direction. The x direction is

chosen to be in the plane defined by B; and the z direc-
tion. The angle between the projection of p on the x-J
plane and the x direction is called p. The magnetic ener-

gy can now be written
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AE(v p) = KV[1+h; +2h;(cosv —sinv cosy)l . (4)

Thus for a given value of i the energy barrier is a func-
tion of the angle g. Therefore, the transition probabilities
per unit time, f(v, p), for transitions across the barrier
along diA'erent paths, corresponding to diferent values of
p, are expected to depend on p. In the following we as-
sume that the relaxation time for a transition along a

given path is given by an expression equivalent to Eq. (1),
where AE is replaced by AE(v, p). We also assume that
the influence of 8; on up is negligible. The total transi-
tion probability per unit time for a particle at 6=0 is

then given by

+2m

f(i)=(2z r)a' dyexp~—
u P

aE(v, v ),
kT

(5)

For p; =pB;/kT« 1 we obtain

f(v)= ra [1 P;cos +v(P /2) (1+cos v)]

xexp[ —a(l+h; )], (6)

Tg = —
1
—ha„—C —

1
KV 2 4 (8)
kC '

3

where h.,„=p (B; )/(2KV) and C=ln(r /ro). The
value of (B; ) at an ion in a paramagnetic material has
been calculated by van Vleck [24]. The analogous ex-
pression for (B; ) at a particle i in a sample of identical
superparamagnetic particles can be written

3280

where a=KV/kT. The dipole field 8; fluctuates in size
and direction. We assume a Gaussian distribution of the
values of )8;~ and that all directions of 8; have the same
probability. By integrating over all values of B; we ob-
tain

2

r = rpexp a ——
1
——a

Pa. 3

3 4
(7)

where P„=p (B; )/(k T) .
The basic principles of the model can be summarized

as follows: At a given time the particle will be exposed to
a dipolar field 8;. The magnetization vector fluctuates
rapidly in directions close to the energy minimum. These
fluctuations (collective magnetic excitations [22,23]) have

frequencies of the order of 10' -10' s ' [23]. Oc-
casionally the magnetization vector will come across the

energy barrier at some angle p. Averaging over all values
of y and 8; we obtain the average relaxation time given

by Eq. (7). The decrease of the relaxation time due to in-

teractions is related to the lowering of the energy barrier
for some values of p.

It is now possible to calculate 1q in the presence of
weak interactions. Noting that r =r at T=Tq we find

from Eq. (7)

where pp is the vacuum permeability and d;~ is the dis-
tance between the particles i and j. Introducing d;z
=a,~eD, and assuming that the particles are spherical

with identical magnetic moments p =(z/6)D M, where
M is the saturation magnetization, we obtain

2 4 —6PpM e
a;~

6

1152K

For maghemite particles with dimensions of the order
of 5-10 nm, K = (1-4)X 10 3m [7,25,26] and the
saturation magnetization of maghemite is M =4&10'
Am '. We assume that the value of gja;J is indepen-
dent of particle size and concentration. It may be of the
order of 10-20. rp is in the range 10 ' -10 ' s and
thus C is in the range 4-11. Neglecting the width of the
size distribution we find from Eqs. (8) and (10) that for
t. =5.2, the change in Tg due to interactions is less than
0.2' and thus negligible, but for e=1.3 the value of
h,. „(& C —1) is in the range 0.2-10 and therefore the in-

teractions are expected to have a significant influence on

Ta. According to Eqs. (8) and (10) one should expect
that the data shown in Fig. 2 can be fitted with straight
lines through the origin. However, the best fit of the data
for a=1.3 with a straight line has an intercept at about
40 K, and for the smallest particles Tq seems to be higher
than predicted by the model, both for a=1.3 and a=5.2.
There are two obvious explanations for the deviations.
First, the value of K is expected to increase with decreas-
ing particle size due to the enhanced influence of surface
anisotropy [27]. This can especially explain the relatively

high blocking temperatures for the smallest particles.
Second, it is well known that spin canting effects reduce
the magnetic moments of maghemite particles and the
relative amount of canted spins increases with decreasing
particle size [28,29]. The reduction in the magnetic mo-

ment may be described in terms of a nonmagnetic surface
layer with a thickness r =0.3-1.0 nm [29]. The influence
of the reduced magnetic moments on Ta can be taken
into account by replacing h, , by h.,'„=h,„(1—2r/D)' .
The conditions h,. „« 1 and P,,«1 used in the derivation
of Eq. (8) should then be replaced by h,.'„« 1 and

p,'„=p.„„(l—2r/D) «1, respectively. The reduction in

Tq due to the increase in the interactions is less than 35%
(Fig. 2). According to the model this indicates that
h„.'„( -', C —1) (0.35, i.e., h,.'„(0.08 and P,'„+ 1 at T
~ T~ even for the smallest possible value of C. The ap-
proximations used for the derivation of Eq. (8) therefore
seem reasonable.

The fits of the data points shown in Fig. 2 were ob-
tained using the model described above. For a=5.2 the
fit is a straight line from the slope of which we find that
K/kC=0. 81 Knm . The data points for @=1.3 can be
fitted well with a range of combinations of the parameters
h.,„(-', C —1) and r The curve show. n is the best fit calcu-
lated with K/kC =0.81 Knm, h,„( i C —1)=2.13, and

2t =1.24 nm. The fit shows that the model is able to ac-



YOLUME 72, NUMBER 20 P H YSICAL R EY I EW LETTERS 16 MAY 1994

count for all the results, except those for the smallest par-
ticles which are expected to be most influenced by an in-

crease in K due to surface effects [27].
It is thus concluded that the present model for the

influence of weak interactions on the superparamagnetic
relaxation can explain the observed dependence of the
blocking temperature on the strength of the interaction.

We finally emphasize that the model is only valid for
small values of P,.'„. At low temperatures (P,'„~ I), the
magnetic interaction will result in freezing of the magnet-
ic moments into a spin-glass-like state [4]. In the frozen
states with lowest energy the direction of B; will be close
to the easy direction of magnetization for a large fraction
of the particles such that the energy barriers for reversal
of the magnetization of these particles increase, resulting
in longer relaxation times. For the concentrated samples
8,.'„= I at temperatures of the order of 100 K. Studies of
the initial susceptibility have sho~n maxima at tempera-
tures T,, „&100 K and the values of T,.„were found to
increase with increasing concentration [7]. This behavior
is opposite to that predicted by the model discussed
above, but it can be explained by the freezing of the mag-
netic moments due to interaction in the concentrated
samples at low temperatures [4).

Chimie de la Matiere Condensee is CNRS URA No.
1466.
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