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Dynamical Simulation of Spins on Kagome and Square Lattices
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The time evolution of classical Heisenberg spins on kagome and square lattices is numerically
evaluated. A clear difference is found between the two cases in the time dependence of an individual
spin S(t). The stability of possible ground states is discussed in light of the sample-averaged corre-
lation function [S(t)S(0)]. The spectral density j(w) as a function of temperature is also computed.
In the square lattice two phases are observed, whereas in the kagome lattice only motional narrowing
is seen. The application of these simulations to SrCrsGa40i9 is discussed.

PACS numbers: 75.10.Jm, 75.40.Mg

The Heisenberg model with antiferromagnetic interac-
tion between near neighbors on the kagome lattice (Fig.
1) has drawn considerable attention due to the degener-
acy of its ground states [1—8]. The energy of this system
can be minimized by placing the spins on each trian-
gle 120 degrees away from each other, which results in a
manifold of possible ground states [2]. In some of these
states the spins lie in one plane. At least two of these
coplanar states also possess long range Neel order: the
so-called v 3 x ~3 and q = 0 states. The states with long
range order are obtained by defining three spin orienta-
tions, A, B, and C, such that the angle between any two
of them is 120 degrees. The q = 0 configuration, shown
in Fig. 1(a), is obtained by placing the spins along any
line which connects nearest neighbors in an alternating
sequence (e.g. , ABABAB) [3]. The v 3 x v 3 state, shown
in Fig. 1(b), is obtained by placing the spins along each
such line in a rotating sequence (e.g. , ABCABCA) [4].
However, minimizing the classical energy in itself does
not necessarily cause the system to favor long range or-
der or even a coplanar con6guration. The selection of
specific configurations must therefore proceed via some
other mechanism.

Chalker et aL [5] argued that thermal fluctuations will

cause the system to select a coplanar ground state (so-
called order by disorder). They attribute this selection to
zero mode excitations (a local motion of a small group of
spins), found by Harris et aL [3]. Numerical simulations
performed by Reimers and Berlinsky demonstrated that
the tendency towards coplanarity starts at T/J 0.01
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FIG. 1. Classical spins on the kagome lattice with (a) a

q = 0 ground state and (b) a v 3 x v 3 ground state.

[6]. The simulations also showed an increase in the order
parameter corresponding to the v 3 x y 3 state (m~s), as

T ~ 0. In addition, according to Sachdev, the v 3 x +3
configuration is selected by quantum fluctuations [7].
However, some forces are detrimental to the v3 x v 3
state. One such force is the decrease in free energy re-

sulting from low concentration chiral domain walls [6].
Another force, discussed by von Delft and Henley, stems
from tunneling phenomena which compete with the ten-
dency towards long range order in the case of small inte-

ger spin [8]. The competition between mechanisms that
favor the v 3 x v 3 state and those that drive the system
towards disorder could result in interesting dynamical be-
havior.

Experimentally, SrCrsGa40is (SCGO) has been stud-
ied as a physical realization of the kagome system [9].
Neutron scattering and muon spin relaxation experi-
ments have revealed very interesting dynamical behav-
ior. In neutron scattering, at T = 1.5 K, the frozen
part of the moment was found to be less than half of the
fluctuating part; the broad scattering peak was associ-
ated with short range antiferromagnetic correlation [10].
Spin Buctuations at 40 mK, without any detectable static
component, were found in muon spin relaxation measure-
ments [11]. Both of these measurements are sensitive to
temporal spin fluctuations.

These dynamical properties, unusual from both a the-
oretical and experimental standpoint„motivated us to
simulate the time evolution of spins on a kagome lattice.
Our aim is to check the stability of the long range order
against excitation as well as to investigate the tempera-
ture dependence of the spin-spin correlation function. %e
also wish to examine the inBuence of the underlying lat-
tice geometry on the spin evolution. We achieve this by
comparing the dynamics of kagome and square lattices,
since both these lattices are fourfold coordinated. Our
dynamical study proceeds in three steps: (I) we examine
the time evolution of an individual spin S,(t) for given
initial conditions, (II) we test the stability of the system

by comparing the sample averaged correlation function

[S(0)S(t)] between the two lattices for a given excita-
tion energy, and (III) we evaluate the spectral density
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work of a damped harmonic oscillator. The SACF of the
square lattice, shown in Fig. 3(a), exhibits a clearly de-
fined frequency (0.01J) with a zero damping rate. On
the other hand, the SACF in the excited v 3 x v 3 has a
very large damping rate and oscillations occur on various
time scales. Finally, the excited q = 0 is an intermediate
case in which the frequency, like that of the square, is
well defined (0.007J), but the damping is finite like that
of the v3 x v3.

In step III we perform the temperature average fol-

lowing the procedure of Wysin and Bishop using a com-
bination of Monte Carlo (MC) simulation and the RK
integration [13]. The underlying equation which we eval-

uate is

~(—&/&)
(S(0)S(t)) = ) &

[S(0)S(t)], , (2)
IC

where IC stands for initial conditions, E is the total en-
ergy of the system, T is the temperature, and Z is the
partition function. The evaluation of Eq. (2) is done in

a cyclic procedure: first the system is warmed from the
T = 0 configuration by MC; next, the final configuration
of the MC procedure is taken to be the initial configura-
tion for the equations of motion; the RK integration is
then used to obtain a correlation function, and the final

configuration of the motion is fed back into the MC for a
new choice of initial conditions. We average the correla-
tion functions over 18 cycles at low temperatures and 6
cycles at high temperatures. For the Monte Carlo selec-
tion of states we use 10000 lattice sweeps in the standard
Metropolis algorithm [12]. In the kagome case, the T = 0
state is taken as the +3 x +3.

At the end of the temperature averaging we obtain the
spectral density defined as

dt cos(art) (S(0)S(t)),

using a fast Fourier transform (FFT) algorithm. The
weak damping rate in the oscillations of the square case
hinders the Fourier transform and we have to smooth
the spectra with a Gaussian. The details of the shape
of j(a) therefore depend on the choice of Gaussian and

the simulation time. However, the quantity which is of
major concern to us, j(0), only weakly depends on the
transformation procedure. In the kagome case, there is

no difficulty in obtaining the Fourier transform.
In Figs. 4(a)—4(c) we show j(w) for the square lattice

at three temperatures: 1, O. l, and 0.02J. The reader
should note the diKerent time sca,les of the abscissa. As
the temperature decreases from 1.0 to 0.1, the scale of
the spectral density narrows and j(0) increases. In ad-

dition, a number of spin wavelike peaks appear in the
spectra. The narrowing of the spectral density with de-

creasing temperature is characteristic of a, paramagnetic
phase. Upon further cooling to 0.02J, j(0) decreases and
only one narrow peak centered at a & 0 is observed.
This behavior is characteristic of an ordered phase and
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FIG. 4. 8pectrai density j(u) in the square lattice obtained
at (a) T = 1.0J, (b) T = 0.1J, and (c) T = 0.02J, and in the
kagome lattice obtained at (d) T = 1.0J, (e) T = 0 1J, and

(f) T = 0.01J.

can be qualitatively understood from the results of step
II. At low temperatures, only a narrow range of low en-

ergy excitations are accessible to the system; the corre-
lation function is therefore combined from a number of

[S(0)S(t)] which resemble each other. The SACF shown

in Fig. 3(a) is a typical example of one such [S(0)S(t)]. It
results in a (S(0)S(t)) which can be described as an un-

derdamped oscillator and a spectral density with a peak
at ~ ) 0. At high temperatures a wide range of high

energy excitations are accessible to the system; the cor-
relation function is expected to be overdamped and the
maximum of j(a) is expected at ~ = 0. In the kagome
lattice the situation is fundamentally diferent, as can be
seen from Figs. 4(d) —4(f). Although there is a narrow-

ing of the spectral density, j(0) continuously increases

upon cooling. In other words, no phase transition is seen
as T -~ 0. This behavior can also be understood from

step II; the SACF in the v 3 x v3 shown in Fig. 3(b) is

strongly damped even at very low excitation energies. It
is therefore not surprising that (S(0)S(t)) is overdamped
and that j(~) is peaked at zero frequency for all temper-
atures.

In Fig. 5 we show j(0) [normalized by the value of j(0)
at T = 10J] as a function of temperature for the kagome
and square lattices. The error bars are estimated from

the variation of j(0) between difFerent cycles. In this fig-

ure we also show simulation results for a kagome lattice
with 675 (L = 15) spins and 108 (I = 6) spins. In the

square lattice we see a maximum in j(0) at T = 0.1J„
while in the kagorne lattice, j(0) is monotonicaily in-

crea,sing with decreasing temperature. In addition, we

see a very weak lattice-size dependence in the kagome

case. The peak of j(0) in the square case is not surpris-

ing, since at T 0.5J the correlation length reaches the
lattice size [14]. However, the continuous increase of j(0)
in the kagome case, even for a small system, is not trivial,
especially in view of the increase in the order parameter
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strate that in the kagome lattice the spectral density con-

tinuously narrows with no transition down to T = 0.
This is in agreement with both experimental results and
thermodynamical simulations [5). We also demonstrate
that the kagome lattice and possibly other frustrated
magnets are good candidates for the type of dynamical
studies presented here.

The author wishes to thank A. S. Blaer, V. Elser, M.
Gingras, K. Kojima, G. M. Luke, S. Miyashita, O. Tch-
ernyshyov, W. D. Wu, and Y. J. Uemura for helpful dis-

cussions.

TEMPERATURE (J)

FIG. 5. The spectral density at zero frequency j(0) normal-
ized by the value of j(0) at T = 10.0J is plotted against tem-
perature in units of J. The normalization factors are 1.12/ J
in the square with I = 30 spina, 2.40/J in the kagome with
L = 18 spins, 2.36/J in the kagome with L = 15 spins, and
1.17/J in the kagome with L = 6 spina. The solid lines are
guides for the eye. The inset shows the experimental result
for the p,

+ spin-lattice relaxation as a function of temperature
in SrCrsGa40yg [11].

rrI~s with decreasing lattice size at T ~ 0 [6]. It sug-
gests that the difference between the square and kagome
lattices is due to the local motion of spins in the kagome
system, namely, the zero modes.

The spectral density at zero frequency, j(0), is inti-
mately related to the spin-lattice relaxation rate (Tq) of
local probes (e.g. , NMR and pSR). The relation, when
the static local field is small, is given by I/TI Bzj(0)
where B is the instantaneous local field at the probe
site [15]. From our simulation we therefore anticipate
the absence of a Tq minimum in the kagome lattice. In-
deed, such an absence was observed in the kagome sys-
tem SrCrsGa40qs using the tsSR technique [11]. The
experimental results, normalized by J = 60 K [3], are
presented in the inset of Fig. 5. It should be noted that
some difFerences between these simulations and the @SR
experiment on SCGO are anticipated since SCGO con-
tains 14' nonmagnetic impurities on the kagome plane
as well as magnetically active triangular planes.

We have found that the kagome lattice has a very
strong inHuence on the evolution of Heisenberg spins.
Between the two kagome ground states discussed here,
the q = 0 is more stable against small excitations. In
the v 3 x v 3 state the system loses memory of its initial
con6guration relatively quickly. Our simulations demon-
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