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Phase Diagram of Systems with Pairing of Spatially Separated Electrons and Holes
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The unusual mechanism of superconductivity, which was predicted earlier and is due to the pairing of
spatially separated electrons and holes, is dramatically dependent on interband transitions capable of
fixing the order parameter phase and thus eliminating superfluidity. In this paper the conditions are
found under which the interband transitions do not prohibit superAuidity of pairs. A phase diagram is

plotted for the corresponding systems.

PACS numbers: 74.60.—w

An unusual superconductivity in systems with pairing
of spatially separated electrons and holes (SSEH), with

the superconducting currents in the electron and hole re-

gions being equal and oppositely directed ("condenser"
superconductivity), was predicted [1,2] as far back as

1976. In view of the diScuIties in creating the required
structures, the validity of the formulated idea could not

have been verified long experimentally. During the last

years, such structures have been created and a number of
observations of SSEH pairing were reported [3-5].
There are several calculations of the SSEH binding ener-

gy in two, one, and zero dimensions (cf., for instance,
[6]). Besides, the effect of high magnetic fields normal to
the structure plane on the SSEH pairing was studied
theoretically [7].

However, there is a question of fundamental impor-
tance of how interband transitions which in the SSEH
case coincide with interlayer transitions affect SSEH
superfluidity. These transitions are able to fix the order
parameter phase, thereby changing the state from a su-

perconducting to an insulator state. The problem of
phase fixation arises inevitably in planning an experiment,
since in order to reach practically measurable superfluid
transition temperatures T„ it is necessary to bring the
electron and hole layers closer to a spacing, at which the
interlayer transitions cannot be neglected. The effect of
interlayer transitions on SSEH superfluidity was first
considered in [8,9]. The results obtained there regard in

fact the case of zero temperature, because fluctuations,
which destroy the phase coherence, are disregarded in

[8,9]. Analysis of the processes responsible for the de-

struction of phase coherence in systems with SSEH at

!
nonzero temperatures and with account of interband

transitions is the aim of this Letter.
Let us consider a three-layered structure, the external

layers of which are two-dimensional metals with electron
and hole conductions, and the internal layer is an insula-

tor. Assume that in the electron conductor the energy of
the carriers has two symmetrical minima at opposite
boundaries of the Brillouin zone, while in the hole con-
ductor, there is a maximum at the center of the Brillouin
zone.

Interaction between electrons and holes will lead to a

rearrangement of the ground state and phase transitions
in the system. The appearing phase depends considerably
on the concentrations of electrons n, and holes np which

are assumed to be equal to n. If the concentration n is

large and the degeneracy temperature To exceeds the
electron-hole binding energy Ep, then either an electron-
hole liquid (strong anisotropy) or a phase, which is called
the "excitonic insulator" (isotropic dispersion laws),
forms depending on the degree anisotropy of the disper-
sion laws. If To is essentially less than Eo, then the size
of a bound electron-hole pair is small as compared to the
distance between pairs, and at low temperatures we have

bosons formed by spatially separated electrons and holes,
the number of which is not necessarily conserved because
of tunneling between the conducting layers. %'e shall
consider only the latter case as more favorable for the
transition to the superfluid state.

At T«EO all electrons are paired with holes and the
system can be described using collective variables, viz. the
density of pairs p(r) and the conjugate phase w(r). In

the partition function Z which is a functional integral
over tp(r) and y(r), we can perform integration over p(r).
Integrating also over the "fast" components of the phase
p(r), we obtain

6 n,
Z = Dp(r) exp't —

P dr (Vp) + Tt2n, (1 —cos2p)
2m

Here n, is the superfluid density of the Bose gas of
electron-hole pairs and Ti2=TtqC(n, ), where Ti2 are the

matrix elements of interband tunneling. The correcting
factor C(n, ), associated with phase fluctuations, may be

put to unity for almost all temperatures concerned.
Therefore below we shall below ~rite T~2 instead of T|2.

The last term in the exponent in (I) which is propor-
tional to T]2 gives the interband transitions. It contains
cos2p (rather than cosy), because the momentum conser-
vation law under tunneling provides tunneling only of two
electrons simultaneously. If this term is absent, Eq. (I)
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implies that the Berezinskii-Kosterlitz- Thouless transition
to the superfluid state takes place at a temperature TqyT.
This term lifts phase degeneracy, in this case the system
undergoes an Ising-type phase transition at a temperature
T„and one of the two equivalent phase values, 0 or z, is
spontaneously fixed. As a result, the system goes over to
the insulator rather than superfluid state. This was first
pointed out by Guseinov and Keldysh [10]. It might look
like a superfluid flow of electron-hole pairs cannot exist in

the presence of interband transitions. In reality, however,
the situation is more complicated.

Suppose that at the x =0 boundary of the structure a
current J Rows into the hole region. Let the same current
J flow out of the hole region at the opposite boundary at
x=L and into the electron one. And at last let the
current J flow out of the electron region at x=0. The
current J is an "external force" which gives rise to a How

of electron-hole pairs and therefore to equal and opposite-
ly directed currents in the electron and hole regions. It
results in an additional term J(h/m) f (dp/dx)dr in the
Hamiltonian, thereby essentially altering all results.

Indeed, at T =0 the energy minimum is reached on the
functions that satisfy the equation

2k V y =sin2p, (2)

where k =h /4mT~2. One of the solutions to Eq. (2) is
po=2arctan(+ x/k). This solution describes a vortex in

which the current circulates around an axis within the
plane of the structure. It is the possibility of the appear-
ance of such vortices which is responsible for the shape of
the phase diagram. Since the phase increment at such a
vortex is + m, randomly distributed vortices destroy the
phase coherent long-range order. Absence of vortices is
evidence of long-range order. The vortex energy per unit
length

8,, =4n, (h T~2/m) '~ —(n/m)t2 1 (3)
is positive when J & J,=—(4/ )2nr, ( Tm~ )'2and negative
when J & J,. Therefore, if J & J„then at T =0 vortices
are energetically unfavorable and the system supports a
long-range order, with which nonzero quasiaverages
(cosy& is associated. Since the phase p is in this case
spontaneously set at 0 or x, then the longitudinal current,
proportional to Vp, is zero in the bulk of the layer (near
the boundary, within a length A, , the current is nonzero).
The transverse (interband) current, proportional to sing,
is also zero. Thus, if J & J„ then at T=O K the struc-
ture is in the insulator phase.

If J & J„ formation of vortices is energetically favor-
able; ho~ever, the long-range order is not destroyed at
T=O K, since the vortices in this case are arranged in a
lattice with period a along the x axis. The period is
determined from the energy minimum condition and is a

FIG, 1. Phase diagram of the system with paired spatially
separated electrons and holes in the presence of a tunneling be-
tween conducting layers in coordinates: temperature T vs longi-
tudinal current in the electron layer J (in the hole layer, the
current is —J). N, I, and S are the normal, insulator, and
superfluid phases, respectively. Regions 1, . . . , 5 correspond to
different order destruction mechanisms.

function of the current J. As J J,+0, the period
a ~. An important diAerence of the new phase from
that with J & J, is that now the system has a continuous
rather than discrete symmetry. Thus, at J & J, the sys-
tem is in the superfiuid phase (condenser superconductivi-

ty is the case).
At T&0 K the system can be in one of the three states:

normal (N), insulator (I), or superconducting (5). The
phase diagram is shown in Fig. 1. The transition from
the I to the N phase is due to the thermal excitation of
vortices. The transition from the S to the Ã phase is a re-
sult of melting of the vortex lattice. Note that at T~O K
the I-S phase transition occurs via the intermediate W

phase, similarly to the transition from the commensurate
to incommensurate phase (cf. [11]).

To find the dependence of the I-N phase transition
temperature T, on the current J, one needs to calculate
the vortex free energy f,, (T), which differs from the ener-

gy (3) by the entropy term. The temperature at which

f,, (T) is zero, is the transition temperature T„. The free
energy f,, (T) is easy to find if we take into consideration
that flexural vibrations can propagate along the vortex
line with the dispersion law 8 =cp, where the velocity c is

equal to the first sound velocity in a system of bound
electron-hole pairs. The energy f,, (T) is a sum of u, , and
the free energy of fiexural vibrations (per vortex unit
length) f= —(rr/6)T /hc. From f,. (T, ) =0 it follows
that T, =(6/n)he@', , (J). However, the above simple cal-
culation is only valid for currents J close to J, (region 3
in Fig. 1). As was first noted in [12], when a vortex ap-
pears, the density of states of the continuous spectrum is
renormalized, though the spectrum remains unchanged:
6=lh +c (p +q )1', where A=he/4k. As a result,
the free energy per unit length receives the following ad-
ditional contribution:

7 t

ln 1
—exp

(2n) h "
[p2+ 2( 2+ 2)] I 2

T
Bx

dq dp. (4)
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Here x =arctand/cq is the phase acquired by a particle as it moves from —~ to ~ in the potential field of the vortex.
By adding up the contributions of flexural vibrations along the vortex and of (4), we obtain from f,, (T„)=0 the follow-
ing equation:

T, &~IT. ~ y~ «DIT
T, +a

Q {) x
1

J LAIT

where BD = hc Jn W.hen 1
—J/J, ((mh/16A n„ the

transition temperature T„ that follows from (5) coincides
with the above one. Equation (5) shows that the free en-

ergy gain of vortices due to their flexural vibrations can
be substantially canceled out by the loss in the energy of
the excitations from the continuous spectrum caused by
their scattering on vortices. The overall effect is that if J
is not too close to J„the temperature T, depends on the
tunneling matrix elements T ~p only logarithmically.

Equation (5) gives T„ for regions 2 and 3 (see Fig. 1).
For region 1 the interaction of normal modes should be
taken into consideration. Calculation yields (cf. [12])

T, =2m(t1 n, /m)(lnJ, /J)/(InhD/5) .

Let us consider the transition from the S to the N
phase. The existence of the former is provided by the
vortex lattice. Melting of the lattice destroys super-
fluidity. The melting temperature can be easily found, if
we assume that the vortex lattice melts via the
Berezinskii-Kosterlitz- Thouless mechanism, i.e., dissocia-
tion of dislocation pairs with antiparallel Burgers vectors.
In this case the lattice melting temperature T is

T~ =JK„K~(2a) /8z.

Here a is the vortex lattice period; K, and K~ the elastic
constants involved in the lattice energy

' 2 ' 2
To

where u(r) is the displacement of vortices in the direction
perpendicular to the vortex line, assumed to be directed in

equilibrium along the y axis. The first term in (7) de-
scribes compression of the vortex lattice and the second
one its flexures. Hence (cf. [13]) K„=8 F/Ba ~apts, -o
xa and K~ =to/a. Here F is the free energy per unit
area and t o, the linear tension of the vortex.

In a narrow range of currents, J—J, (&J„ the lattice
period a is much larger than the vortex size A. in the plane
x, y. In this case 80 is equal to the first term in (3). To
calculate K„ it should be taken into account that in this
range of currents an important role belongs to intervortex
"collisions, " associated with thermal displacements of
some parts of a vortex over distances roughly equal to the
lattice period a (see [13,14]). As a result (cf. [13,14])
T = (Cpa /k)exp( —a/2A, ).

In the case of large overlap of vortices (X))a, i.e. , for
J» J,) we have a different situation (region 5 in Fig. I).
The interaction of vortices is strong and prevents their
large flexures. One can easily find the spectrum of small

vibrations to make sure that the temperature related
correction to the energy of the system may be neglected
for k»a, i.e., the free energy F may be replaced by the
energy E. The latter, for k»a, is

F. =T~2n, (2n X /a —8A,J/aJ„) . (8)

(10)

On the other hand, as seen from Fig. 3, a dislocation in a

I

I
l
I

i
gg 8g

FIG. 2. A dislocation in a vortex lattice, a)&A, . The solid
lines represent vortex axes and the dashed line is the cut with a
2z phase jump. The phase values away from the vortex axis are
indicated.

The second derivative of E, times a, is K, . To find

K~, we take into consideration that in this case the linear
tension 60 is determined by the interaction of this vortex
with the others and 60 is the derivative of the first term of
(8) with respect to the vortex density n, , =a '. Hence,
for A, »a, T is to be found from the equation

„6'n, (T )
2 m

This equation for the vortex lattice melting temperature
coincides with that obtained by Kosterlitz and Thouless
for the temperature of the superfluid transition in two-
dimensional systems without factors that fix the order pa-
rameter phase. The reason for this coincidence will be
obvious from the character of the dependence of the
phase on the coordinates for the case when a dislocation
is present in the vortex lattice. Figure 2 shows the phase
y as a function of the coordinates for J & J,. Since the
phase increases by z at the expense of each vortex and

may have only an increment multiple of 2z while going
around any point, then the vortices forming the lattice are
allowed to break only in pairs (see Fig. 2). Thus, as we

go around a breaking point, i.e., a dislocation, along a
closed contour, the vortex displacement u(r) gains an in-

crement equal to twice the lattice period,
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FIG. 3. The phase y as a function of r near a dislocation (cf.
Fig. 2). The arrows represent "phase" vectors with components
(cosw, sin+). The empty circle is the point where n, =0.

vortex lat tice is a singular point around which the
superfluid rotates. Thus, the break of a vortex pair whose
axes lie within the plane of the structure gives rise to a
planar vortex with the axis perpendicular to the plane of
the structure. The presence of a planar vortex means that
as we go along a closed path around the singular point,
associated with the dislocation, the phase gains an incre-
ment of 2z,

identical to that of planar vortex-antivortex pairing in a
two-dimensional superfluid system without phase-fixing
processes. For an arbitrary current, these problems are
not identical, and therefore Eq. (9) is not valid in the
general case; however, for J & J, the destruction of
superAuidity (as in systems without phase fixation) is due
to the dissociation of planar vortices. It can be shown (cf.
[15]) that below T, as in the absence of interband tran-
sitions (i.e., with Tt2 =0), the correlator (expi[p(r)—p(r')]) falls off by a power law.

Thus, in this paper it has been ascertained that inter-
band transitions do not eliminate the possibility of
superfluidity to exist in systems with pairing of spatially
separated electrons and holes. Interband transitions
affect considerably the form of the phase diagram only
for the currents J & J,. If J)J, and T & T the sys-
tems considered have all the properties of two-dimen-
sional superfluid systems.

It is easy to see that motion of a planar vortex along
the y axis from y —ee to y =~ results in two addition-
al rows in the vortex lattice and in an increase of the
phase difference between x = —~ and x =~ by 2tr. In-
verse motion of the planar vortex yields an opposite re-
sult. If dislocations are paired with antidislocations, the
corresponding planar vortices are paired with antivor-
tices. Now the phase difference between x= — and
x =~ does not vary in time with a flow on and there is no
dissipation. The dissociation of dislocation pairs and the
accompanying dissociation of planar vortex pairs at the
lattice melting temperature cause these vortices to move
across the flow, and therefore the phase difference along
the Aow decreases and the Aow decays in time.

Comparison of (10) and (11) shows that u(r) and ta(r)
are related as ta(r) =(tr/a)u(r), where tp(r) is a mul-
tivalued part of tp(r). If we substitute the phase
tp(r)=8(r)+a(r), where hn, d8/dx =J is the expression
for the energy and take into account that for J» J, the
main contribution to the energy of the system comes from
the term (h 2n, /2m ) (Vy) 2, then

J2 An,0= dr +J 2Mn a 2177

r)u + t)u

t)x t)y

(12)

Thus, when J))J, we have K =K„=(tr/a) h n„/m and
obtain, using (6), T from (9). We see that for J))J,
the problem of dislocation-antidislocation pairing in a
vortex lattice, with the axes in the structure plane, is
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