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3D X-Y Scaling of the Specific Heat of YBazCu307 —tt Single Crystals
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The specific heat of a single crystal sample of YBa2Cu307-b has been measured with magnetic fields

up to 8 T applied parallel to the c axis of the crystal. The results provide strong evidence for the ex-
istence of a critical regime within which there is scaling behavior characteristic of the three-dimensional
3'- Y model with critical exponents consistent with those observed in superffuid He.

PACS numbers: 74.25.Bt, 64.60.Fr, 74.20.De, 74.25.Fy

The phase transition in conventional, low-T, supercon-

ductors is well described by mean-field theory. The ef-

fects of thermodynamic fluctuations are generally small

in these materials, because of their low transition temper-

atures and large coherence lengths [I]. By contrast, the

nature of the phase transition in high-T, superconductors
is at present a matter of debate. The high transition tem-

peratures and small coherence lengths of high-T, materi-

als lead to significant fluctuation eA'ects, which are not

adequately described by Gaussian corrections to mean-

field theory [2]. ln these materials, therefore, one might

expect to observe the eA'ects of critical fluctuations. The
temperature range over which critical fluctuations should

be observable is usually estimated from the Ginzburg cri-

terion, but this seems to underestimate the size of the

critical region [3]. Recent estimates suggest that the crit-

ical region of YBa2Cu307 q extends as much as 10 K

above and below the transition in zero field [3].
The universality class of the superconducting transition

is at present uncertain, but there is growing evidence that

YBa2Cu307 —q exhibits critical fluctuations characteristic
of the three-dimensional X-Y model [4], in which case its

superconducting transition belongs to the same universal-

ity class as the superfluid transition in liquid He. If this

is so, then the phase diagram in the magnetic field-

temperature plane should possess a single critical point at

T=T, and 0=0 and critical fluctuations should be ob-

servable in a region near this point. In this region, the

dependence of physical properties on temperature and

field is expected to exhibit single-parameter scaling with

the scaling variable t/H' ", where v is the critical ex-

ponent describing the divergence of the coherence length

and t is the reduced temperature (T T, )/T„Theore—ti-.
ca1 estimates for the three-dimensional L-V model give

v=0.669 ~0.002 [5], while the measured value of v in

liquid He is 0.672 ~ 0.001 [6].
The broadening of the superconducting transition in a

magnetic field has recently been discussed in terms of the

lowest Landau level (LLL) approximation [7,8], which

applies in a region of the phase diagram close to a renor-

malized H, 2(T) line, when the magnetic field is large

enough for the paired quasiparticles to be confined to

their lowest Landau level. Within this approximation,

physical properties exhibit scaling, with the scaling vari-

able [T —T„2(H)]/(TH) t, but this behavior is not

specifically associated with a phase transition.
In principle, critical and LLL scaling cannot hold at

the same time. Regions of the phase diagram where each
scaling form might be expected to hold are indicated
schematically in Fig. 1, though the quantitative extent of
these regions cannot be estimated reliably. (A detailed
discussion of this diagram in the context of the Hartree
approximation is given in Ref. [9].) Experimentally,
however, the two types of scaling may be quite hard to
distinguish. Indeed, the scaling expressions for the resis-

tivity and magnetization are similar and measurements
on YBapCu307 q seem to be reasonably consistent with

both [4,9]. On the other hand, we show below that the

specific heat is consistent only with critical scaling for the

range of fields and temperatures investigated.
In this Letter, we report measurements of the specific

heat of a single crystal sample of YBa2Cu307 ~ in mag-

netic fields up to 8 T, applied parallel to the c axis of the

crystal. Resistivity measurements on the same sample

(Y8) were reported earlier [10], and shown to be con-

sistent with single-parameter critical scaling for fields up

to 4 T and over a temperature range of 10 K above and

below T, . For the specific heat measurements, we used

an ac technique with temperature oscillations in the sam-

ple of approximately 10 mK similar to the method used

by Salamon et al. [2].
In the critical scaling region, the fluctuation specific

heat is predicted to have the form [9]

LLL regime

Critical fluctuation

eg

Tc

FIG. l. A schematic diagram of the 0-T plane for a super-

conductor indicating the critical regime and LLL regimes.
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Cf =Ca faH—' (2)

where fo=f(0) is a constant. In the limit of zero field,
on the other hand, the scaling function should behave as

f(x) = A —(+'x) l'~, where the upper (lower) sign refers
to t )0 (t & 0), so that

Co —A+rl'l (t &0),
Cf ='

Co —A ( —t)l I (t &0). (3)

The amplitude ratio R =A+/A is a universal quantity,
~hose value is estimated theoretically as 1.029~0.013
[1 1], while its measured value in liquid He is 1.058
~ 0.004 [6].

In addition to the fluctuation contribution, the mea-
sured total specific heat includes nonsingular phonon and
normal-electron contributions. In the following analysis,
we take the total specific heat to be C«t=C„,+Cf, with a
nonsingular contribution of the form C„,=bt+c, where b
and c are constants; we also tried a quadratic polynomial
as a background but there was so little difference in the
results that there was no need for the extra parameter.

Figure 2 shows the zero-field specific heat of sample
Y8. The solid line is a fit assuming the above form for C„,
and that the fluctuation contribution is given by (3). The

I
1

I i I I
1

I I I I I i I
i

& & & & & & & & &

1
i I I 1

2.02—

2.00—
QO

E

-—OOT
0.1 T-- 02T

-- 05T—OST
1.0 T—20T

-- 40T-- 60T
——8.0 T

1.98—

1.96—

i I I I i i 1 i i i I 1 i I i I 1 i i t i 1 i I I I 1 i i i i

-0.10 -0.05 0 0.05 0.10

FIG. 2. Specific heat/temperature vs reduced temperature
for sample Y8; the solid line is a curve fitted by Eq. (3) with the
parameters a = —0.013, T, =92.00 K, and Co+ c =238 m 3 g
K '. Inset: The specific heat vs temperature for sample Y8 in
several applied magnetic fields.

Cf =Co —Hl'l "f(t/H' ")

having a cusp of height C0 at t =H=O. The value of
the critical exponent a=2 —dv (for a system of spatial
dimensionality d) is estimated theoretically for d=3 as
—0.007 ~ 0.006 [5], while its measured value for He is
—0.013+ 0.003 [6]. The exact form of the scaling func-
tion f(x) is unknown, but its behavior for special values

of x=t/H'~" can be deduced. With the temperature
fixed at its critical value (T=T, or t =0), the only singu-

larity in Cf is at H =0, so we must have

fit was performed in the reduced temperature range
—0. 1 & t & 0.1, the value of T, being chosen as 92.00 K,
which corresponds to the temperature at which the

specific heat has the greatest slope. The fits were not sen-

sitive to the choice of T, in the range 92.00+ 0.05 K.
The value of a was then fixed and a least squares fit per-

formed. It was found that the data could be fitted with

values of a in the range 0 & a & —0.03 and that the sum

of the residuals of the fits sho~ed no significant minimum

for any single value of a in this range. This apparently
large range of a is not a reflection of the quality of the

fits, but arises from the fact that the fits necessarily
use four free parameters, b, A+, A, and (Ca+@). The
solid line in Fig. 2 corresponds to a = —0 013 and

C0+c =236.39 m J g
' K '. If a is chosen in the range

—0.013~0.002, then the amplitude ratio R is deter-
mined by the fit as R =1.0695+ 0.01, which is consistent
with the value obtained for liquid He. The values of b

and 3+ for the best fit are 189~1 and 59.37~0.04
m J g

' K ', respectively. We did try fitting the data
using the Gaussian model with a t '~ divergence. A

reasonable fit is on1y possible if we use n & 3, where n is

the number of components of the order parameter but the
sum of the normalized residuals from the fit are a factor
of 2 greater for the Gaussian fit. The full details of these
analyses are given in Overend et al. [12]. Thus, the
zero-field specific heat of YBaCuO is well described by
the three-dimensional X-Y model, with the same critical
parameters as those found for liquid He, over a tempera-
ture range of 10 K above and below T,.

The specific heat of sample YS near its superconduct-

ing transition in fields up to 8 T is shown in the inset of
Fig. 2. The transition displays the usual broadening of
the peak and its shift to lower temperatures with increas-

ing magnetic field. The temperature of the onset of the

peak is, however, largely unafl'ected by the application of
the magnetic field. The main graph of Fig. 3 shows the
fluctuation specific heat scaled according to Eq. (1). As

before, a single value of a cannot be extracted from the
scaling analysis. Having fixed v=0.669 and a = —0.013
the scaling in Fig. 3 is achieved for T, =92.00 K and

C0+c =238 mJg ' K '. The collapse of the data onto a
single universal curve is found to be equally good provid-
ed that T, is restricted to the range 92.00~0.02 K and
Co+c is restricted to the range 238 ~ 1 mJg ' K
The parameters a and Co+c are, of course, the same as
those used in the zero-field analysis of Fig. 2. Close to
the peak in Fig. 3 (t/H'~ "= —0.01 T ) it is evident
that the 0. 1 and 0.2 T data fail to scale. This is due to
finite size effects where the field-induced broadening of
the superconducting transition is of the same order as the
intrinsic disorder-induced broadening. The inset of Fig. 3
shows the same data for the fluctuation specific heat
scaled using the form appropriate for the LLL regime,
Cf=g([T —T,z(H)]/(TH) ) where g(x) is the LLL
scaling function. This scaling clearly fails. Junod et al.
[13] and Welp er al [8] have rec.ognized this problem
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FIG. 3. Single parameter critical scaling of the specific heat
with the parameters a= —0.013, v=0.669, T, =92.00 K, and
Co+ c =238 m J g

' K '. Inset: The specific heat scaled using
the LLL sealing form where ar =[T T,q(H)—]/(TH)

B(T)

FIG. 4. Specific heat vs applied magnetic field at the fixed
temperature 92.00 K. The solid line is a fit by the data with the
parameters a = —0.013, v =0.669 and Co+ c =238 m J g
K

and Welp et al. [8] showed that by introducing H' as a
prefactor to g(x) the LLL scaling improved: There is of
course no theoretical basis for introducing this prefactor.
Junod et al. [13] have measured the specific heat of
YBaqCu307 —q in magnetic fields up to 20 T. Their data
presented in Fig. 11(b) of Ref. [13] are similar to ours up
to our maximum field of 8 T. There is a suggestion that
at high field the LLL scaling improves and this would be
consistent with the phase diagram shown in Fig. l. Zhou
et al. [14] have measured the specific heat of LuBacuO.
Their C„(T)data appear very similar to the measure-
ments on YBCO but they appear to find LLL scaling.
On closer examination of these data the sealing of the
peak, around x = —0.01, is not clear because of the noise
in the data, but more importantly the Cg data has been
normalized by the mean field BCS specific heat, h, C
=yT(1+bi). Over the temperature range of interest
this changes by 40%, mainly because of the bt term. This
has the efi'ect of increasing the peak height for the higher
fields and improving the scaling, and this explains why
others find no LLL scaling while Zhou et al. appear to
observe improved LLL scaling. However, this normaliza-
tion is not justified; Wilkin and Moore [7] and Bray [15]
do normalize their theoretical calculation of the LLL
specific heat but only to the mean-field jurnp, y T.

We have investigated the nature of the transition fur-
ther by measuring the specific heat as a function of ap-
plied magnetic field at several fixed temperatures near T, .
Figure 4 shows the specifi heat at 92.00 K (i.e., at
t =0) and the solid line is a least squares fit to the data
using Eq. (2). Here, the exponent a was again fixed at
—0.013, and from the fit, Co+c was found to be 238
m J g

' K ' in agreement with the previous measure-
rnents.

Taken together, Figs. 2, 3, and 4 show that the temper-

ature and magnetic field dependence of the specific heat
in a single crystal of YBaCuO are well described by the
three-dimensional X-Y model of critical fluctuations.
These figures are all plotted with the same value of a
( —0.013). The value of Co+e was 1'ound to be the same
(238 m J g

' K ') for both the fits (Figs. 2 and 4) and

scaling analysis (Fig. 3). The amplitude ratio R is well

determined from the zero-field fit, and, with the assumed
value of a, is found to be 1.065+ 0.01, in good agreement
with that found for liquid He.

It has been suggested that some superconducting tran-
sitions might be described by an O(n) Heisenberg model
with an even number of order-parameter components n

greater than 2 (which corresponds to the X-Y model)
[161. For n =4, the theoretical value of a is approximate-
ly

—0.167 [17] and, although we are not aware of accu-
rate estimates of this exponent for n & 4, it seems likely
that a decreases monotonically with increasing n. Our
fits determine the value of a only to lie within the range
0 & a & —0.03. Although this determination appears
rather uncertain, only the n=2 model has a value of a in

this range: Models with n ) 4 would be inconsistent with

our data. This provides strong evidence that the transi-
tion in YBapCu307 —q belongs to the same universality
class, n =2, as the superAuid transition in He.
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