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Incoherence of Single Particle Hopping between Luttinger Liquids
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We demonstrate that for general spin-charge separated Luttinger liquids there exists a critical
value of the inter-Luttinger-liquid single particle hopping, t9, below which there is no coherent
single particle hopping between the liquids. In the absence of coherent single particle hopping, two
Luttinger liquids coupled by ¢, will not exhibit split Fermi surfaces. For many Luttinger liquids,
no band dispersing between the liquids will form, and thus the system will retain a one-dimensional
Fermi surface. This will have dramatic implications for the physical properties of such a system.

PACS numbers: 71.27.+a, 72.10.Bg, 74.25.—q

One of us [1] has suggested that the unusual features
of the c-axis resistivities observed in the cuprate super-
conductors are the result of the non-Fermi-liquid nature
of the in-plane ground state of these materials. This
non-Fermi-liquid nature is argued to disrupt the inter-
chain hopping of electrons so strongly that single elec-
trons effectively do not hop between the planes, giving
rise to anomalous c-axis transport properties {1} and to
the anomalously large superconducting transition tem-
peratures for these materials [1,2]. Both of these effects
hinge on the absence of normal interplane hopping and
it is natural to search for theoretical models which ex-
hibit this characteristic. An argument has previously
been given that two Hubbard chains coupled by a weak
interchain hopping show this effect in the character of the

1 iky(z—vt)
G(,t) ~ =— =

singularities of a particular response function [3]. Here
we give a different argument which clarifies the physics
considerably and establishes the conjecture of (3], that
while interchain hopping is not destroyed, it is rendered
completely incoherent for sufficiently small ¢ .

The model we consider is that of two one-dimensional
Luttinger liquids coupled with a weak interchain hop-
ping:

H=H, +H +t0) [cl ,()eao(i) + Hel, (1)

1,0
where the microscopic Hamiltonians for the individual
systems are such that their ground states are Luttinger

liquids [4] and their single particle Green’s functions take
the form

27 \/[z — vt + isgn(t)é]+/[z — vst + isgn(t)é]

plus a similar term from the left Fermi point. For cou-
pled Hubbard chains, v, vs, and a are all functions of
U. For our purposes we only need to know that gen-
eral Luttinger-liquid arguments require that, to lowest
order in the interaction, v = %(UC + vs), Ve —Us x U,
and o o< U2. For the sake of generality we will consider
ve — vy and « arbitrary and specialize to the Hubbard
model as needed.

The motivation for studying this model is as follows.
For Fermi liquids coupled with an interliquid hopping,
the ground state for two liquids is built by making sym-
metric and antisymmetric combinations of the quasipar-
ticle operators in the two liquids and then filling these
new quasiparticle states. This involves constructing a
ground state which is a superposition of states with dif-
ferent numbers of quasiparticles in a given liquid. For
this to be reasonable it must be possible for such a su-
perposition to be phase coherent. This requirement is
innocuous for systems where the exact low energy eigen-
states are electronlike and are hopped by t,. However,
when the system is a non-Fermi-liquid the possibility of
coherence for these states must be reexamined. Previous
studies of models similar to ours [5,6] have not addressed
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I this question. We do not necessarily disagree with the re-
sults of these works; when suitably interpreted, however,
our approach is very different from that of previous work
and we arrive at markedly different conclusions. Rather
than examining the relevance or irrelevance of ¢t in the
renormalization group sense, we ask whether or not the
effect of t| is a coherent one. To answer this question,
we consider a system prepared at time ¢t = 0 such that
the two liquids are separately in t; = 0 eigenstates with-
out any Tomonaga bosons excited. We take one liquid to
have AN more right-moving particles of a particular spin
species than the other liquid, and the two liquids other-
wise identical. We then turn on the interchain hopping,
t1, and ask if the probability of the system remaining
in its initial state, P(t), behaves for intermediate times
(the appropriate time scale will be defined later in this
Letter) in a manner consistent with incoherent hopping.

One way to motivate this question is to recall the zero
temperature properties of the solution of the two level
system problem (TLS) [7]. In that problem one considers
a system which has some variable, 0%, which may take
on two values and which is coupled to a bath of harmonic
oscillators by a term Y, C;jz;0%, where the x;’s are the
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oscillator coordinates, and to a biasing field, ¢, by a term
€o?. One turns on a tunneling matrix element, Ao®,
between the two states and asks about the intermediate
time behavior of (c%(t)). To see why the physics of the
TLS should be related to the case of coupled Hubbard
chains, consider the TLS Hamiltonian after a canonical
transformation has been made to shift the z;:

Hrps = %A(O’+e—in + HC) + %EUZ + Hoscillators- (3)

Here Q@ = 3, —,,T?L—;pi, C; is the coupling to the ith os-
cillator, and m;, w;, and p; are the mass, frequency, and
momentum operator. Written in a bosonized form the
interchain hopping operator, ¢ J_(c){,o(i)c&,,(i) + H.c),
is of a form similar to the A term. It contains a piece
which shifts the number of particles in each chain with-
out exciting any Tomonaga bosons times exponentials of
Tomonaga boson creation and annihilation operators. In
place of the two states in the TLS problem we have many
states labeled by the numbers of right and left movers of
each spin species in each chain. In place of the bath of
harmonic oscillators we have the Tomonaga bosons of the
bosonized Luttinger liquids. We now briefly enumerate
the zero temperature, zero bias possibilities for the TLS.

The effect of the tunneling matrix element, A, is es-
sentially determined by the strength of the orthogonality
catastrophe [8] among the oscillators when the system
moves between the o* states. In the limit of strong os-
cillator coupling (for a definition of weak, strong, and
intermediate see [7]) the tunneling is irrelevant and, if
the system is placed in one o* state, allowed to equili-
brate without A, and A is then turned on, (c*(t)) de-
cays to some finite constant as ¢ — oco. In this case
the system is localized at one value of ¢*. In the op-
posite limit, under the same circumstances, (c*(t)) will
undergo damped oscillations between +1 and —1 at in-

termediate times, decaying to zero at long times. In this
case, the system tunnels coherently between the two o*
states. For intermediate couplings there exists a third be-
havior where, again with the same preparation, (o*(t))
will relax exponentially, without any oscillations, to zero.
In this case there is no coherent tunneling between the
states, but there is also no localization. This phase is
analogous to what we find for coupled Luttinger liquids
for small enough ¢ : incoherent, finite interchain tunnel-
ing. It is important to note that in the TLS it is not
claimed that Aco® is an irrelevant perturbation in this
phase. Naive renormalization group arguments show it
to be a relevant perturbation, but the relevance of the
tunneling term in the Hamiltonian does not guarantee
that coherent tunneling takes place. Likewise, we do not
claim that t, is an irrelevant perturbation, rather that
its relevance is insufficient to cause coherent hopping.

In the TLS coherence or incoherence is signaled by the
intermediate time behavior of (¢?(t)). In our problem,
the analogous signal would come from the intermediate
time behavior of P(t). Unfortunately the behavior of
P(t) is intractable in our problem beyond the lowest or-
der in perturbation theory. However, this order is suffi-
cient to establish whether or not serious problems with
the prediction of incoherent relaxation exist. For exam-
ple, for the case of noninteracting electrons we find

P(t)=1—t2 ANt2+..., (4)

which we recognize as the first term in the expansion
of the exact result P(t) = cos?N(t t). The coherent
tunneling leads to oscillations which manifest themselves
as a time dependence qualitatively different from that
expected from an incoherent decay.

Now we turn to the interacting case. First, we consider
the case @ = 0, v, # v, for which strong arguments
exist in favor of coherent single particle hopping and band
formation (e.g., [6]). We find, to lowest order in ¢, , that

exp{—i Ak[z —v(t' — t") +i6]}

tiL ¢ ! ¢ "
1-P(t) ~ 4_7r7Re (/0 dt /0 dt /dz [z —ve(t — ") + isgn(t! — t")6][x — vs(t — t") + isgn(t — t”)&]) ) (%)

Here Ak is 228N The z integral can be evaluated and
the result expanded for times much less than Ak~!(v, —
vs)! to yield exactly the noninteracting time depen-
dence. This suggests that coherent oscillation will occur
so long as this time is long compared to the oscillation
frequency. Here the oscillation frequency will be ¢, since
that would be the frequency in the noninteracting case
and we are looking precisely at those time scales where
our perturbation theory shows that P(t) is behaving as in
that case. This leads to the requirement ¢t > Ak(v.—vs)

! trivially if Ak is not O(1). The maximum Ak allowed for

coherent oscillations is O(t (v — v5)~!) which is much
larger than O(¢t, v~1!), the number differences relevant to
the splitting of the Fermi surfaces by an amount ~ ¢, .
For the infinitely many chains problem, there would be
no obstacle to the formation of a coherent band of width
~ t;. Now, however, we consider the problem with a
finite.

Since all we are looking for is anomalous time depen-

for coherent interliquid tunneling. This can be satisfied i dences it is sufficient here to consider

t %
1-P(t)~t3LRe [/0 dT'/_?r dT/d:cGN(a:, T)GN+aN(—z, —7-)].

This still leaves us with a complicated multiple integral to consider since the z integral now involves two branch cuts
and two poles. Careful evaluation of the asymptotic time dependences of the z integral yields, for o < 1 and t > A1,
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t T
1— P(t) ~t2 LA **Re (/ dT/ drlaZi(Ak,7) + Zo(Ak,T) + aZ;;(AIc,r)]) ,
0 0

where, for 7 > A~1,

(6)

)
Zl(Ak,T) N/ dz {eiAk(v——vc)‘r +e—iAk('u+uc)‘re—Akz} Z—Qa{Z—Fi(UC +'U3)T]_1(Z + 2Z~vc7_)—1—2aY

0

Z3(Ak,7) is given by a coefficient of order unity times [(ve — vs)7] 17 2%((v, + vs)7]2® sin( 2ELTY apqg

oo
Z3(Ak,T) ~ e’Ak(”“’c)T/ dz[l — exp(—Ak 2)]27 7%z + i(ve — vs)7T) " (2 + 2iveT) 2%,
0

Now we turn to the 7 integral. For Ak = 0 there
is only the Z; term, which behaves at long times as
Z1(0,7) ~ ar~17%  a behavior indicative of an inco-
herent process, for which “golden rule” methods may be
applied. As in the case of the incoherent TLS problem
(7] the 7 integral extended to 7 = oo is found to vanish,
so that a self-consistent approach is necessary, leading to
an incoherent decay rate T' ~ (at2)™%. For Ak # 0
the effect of the Z; term is more complicated to analyze
but it still represents fundamentally incoherent processes.
Further, for times large compared to (Ak)™!(v, — v,)~1,
both the Z; term and the Z3 terms integrate to constants
as T — oo and are therefore also incoherent. However, at
times short compared to (Ak)~!(v. —vs)~! they exhibit
a dangerous, superlinear time dependence. If these terms
are not severely modified by the Z; term then coherent
single particle hopping can occur.

We now argue that, for ¢t; < ¢, the effects of the
Zy term are sufficiently strong that the dangerous time
behavior of the Z; and Z3 terms will not survive. To
show this we need to understand the effect of the in-
coherent transitions on the coherent ones. In a Fermi
liquid, the question of incoherence is a single particle one
and is straightforwardly answered by comparing the de-
cay of the survival probabilities for a given quasiparticle
due to incoherent and coherent processes at intermedi-
ate times. We believe the correct many-body generaliza-
tion to a Luttinger liquid should be based on comparing,
at intermediate times, the survival probabilities per unit
volume of the initial many-body state due to incoherent
and coherent processes. Specifically, at a time, ¢, our Z;
term will have produced Ninc(t) ~ at'~%*¢2 L incoher-
ent transitions [9]. Since each involves the insertion of
an extra electron into one liquid and an extra hole into
the other, each incoherent operation also causes orthog-
onality catastrophes in each liquid leading to an overlap
of the initial state with the new one vanishing like t~4*.
At time t the Njnc(t) transitions which will have occurred
O(t) earlier so the decay of the initial and final state over-
lap due to the orthogonality catastrophes initiated by the
Ninc(t) transitions is given approximately by t—4@Ninc(?)
or exp[—4La?t? t1=4%In(t)]. The survival probability per
unit volume is given by exp[—8a?t2 t1~4=In(t)], which is
to be compared to the survival probability per unit vol-
ume coming from the coherent transitions. The Z; term
gives, after 7 and T integrations, for t <« (Ak)™!(v. —
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vs) !, a term like Lt2 Akt?>~%%(v, — v,)~2*. Subject
to the requirement that t <« (Ak)~(v. — vs)~!, this
is maximized by taking Ak ~ t~!(v. — vs)"!, giving
Lt? (v, — vy)~1722¢1-4¢  We see that, in order for in-
coherent transitions not to dominate and destroy coher-
ence, we need 8a2In(t) < (v, — vs) 172, Provided that
the appropriate time scale grows to infinity as¢t;, — 0 and
a and v, — v, are finite, this cannot be satisfied for arE)i-
trarily small ¢, . If we choose to look at a time ¢ ~ ¢} *
as suggested by renormalization group arguments as the
natural scale in the problem (i.e., the inverse of the value
which ¢, has renormalized to when we have scaled for
long enough to have it grow comparable to the cutoff)
then we find the criterion exp(s=rr; 523‘;1_ —=) Sty for
coherent oscillations to be possible. Specializing to cou-
pled Hubbard chains and inserting the U dependence of
ve — vs and o we find t; < exp(—%8) excludes the
possibility of coherence [10]. Similar reasoning for the
Z3 term gives the same criterion.

Note that, independent of the more subtle form of in-
coherence, we are arguing results from spin-charge sepa-
ration, if & > % the Z; term and the Z3 term will have an
intermediate time behavior consistent with incoherence.
Non-spin-charge separated Luttinger liquids, e.g., spin-
less fermions in one dimension, will also exhibit purely
incoherent hopping if « is larger than this critical value.
This is in spite of the renormalization group relevance of
t) for a < —;- and is more nearly analogous to the inco-
herence in the TLS problem. These systems might prove
a more numerically tractable laboratory for studying the
physics of incoherently coupled Luttinger liquids.

It is possible that Luttinger liquids without spin-charge
separation may exhibit incoherence for o < i—. This is
possible because while we believe that the criterion we
have used for incoherence is correct, it may be overly se-
vere. We have chosen to restrict Ak only to values small
compared to (ve — vg) "1t L ,ren When one might plausibly
argue that it should be no bigger than vt 1,ren- If this
more liberal criterion is used then Luttinger liquids with-
out spin-charge separation would also have a critical ¢
required for coherent hopping even when a < %.

We find the destruction of the coherent single particle
hopping as the result of three properties of the general
Luttinger-liquid state. First, the Fermi surface is suffi-
ciently destroyed to produce, within some time period, a
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finite number of the incoherent processes per unit volume
when a weak interliquid single particle hopping is turned
on. This is represented by our Z; term. Second, the ve-
locities for spin and charge excitations are different, giv-
ing an electron spectral function whose width in energy
space vanishes only linearly as we approach the Fermi
surface, not quadratically as for a Fermi liquid. This re-
sults in the oscillating phase factor of our Z, term and
the exponential decay of our Z3 term and in general de-
stroys coherence at sufficiently long times. Third, there
is an anomalous exponent for the electron propagator,
2a, which represents the orthogonality catastrophe as-
sociated with the insertion of an extra electron or hole
into a Luttinger liquid. This orthogonality causes each
incoherent process to have an effect which increases with
time on the coherent processes and enters our calculation
in the comparison of the Z; term to the Z; and Z3 terms.
Given these three properties there will be a critical value
of t; required to generate coherent single particle hop-
ping between Luttinger liquids. Since all of these prop-
erties are expected to be present in higher dimensional
Luttinger liquids, our results should apply directly to the
cuprate superconductors.

The consequences of the absence of coherent single par-
ticle hopping should be very severe. As we have stated
earlier, the whole apparatus of band theory relies on the
coherence of single particle hopping. If this hopping is in-
coherent, then the usual band theory ground state, which
involves a superposition of states with different electron
number in a given liquid, cannot be an eigenstate of the
interacting system. Therefore, band theory must break
down completely for incoherent single particle hopping,
irrespective of the relevance of ¢; in the renormaliza-
tion group sense. A semiquantitative way of looking at
the failure of band theory comes from recognizing that,
for systems which show coherent oscillations under the
circumstances we have described, the frequency of the
oscillations is a measure of the energy available to the
system by forming coherent superpositions of states in-
volving different particle numbers in a given liquid. For
the case of noninteracting electrons the oscillation fre-
quency or energy available per electron is ¢;. Conse-
quently, the Fermi surface splits into symmetric and an-
tisymmetric Fermi surfaces ¢, apart for two liquids; for
infinitely many liquids a band of width ¢, forms. For
purely incoherent hopping, there is no energy available
and the Fermi surface will not split by any finite amount.
For infinitely many liquids, no band dispersing in the
perpendicular direction should form when the hopping
is purely incoherent; neither should a two-dimensional
Fermi surface form.

The absence of band formation will have direct and
dramatic effects upon many experimentally observable
quantities. We have calculated the finite frequency per-
pendicular conductivity for weakly coupled Luttinger lig-

uids and find a conductivity ~ w*® over a large frequency
range [11]. Using a value of a close to {5 (which is the
appropriate exponent for the large-U Hubbard model,
at least in one dimension) this agrees well with the con-
ductivity obtained from optical measurements by Cooper
et al. [12] on YBayCu3O7. The consequences of inco-
herent single particle hopping for superconductivity are
also particularly important. The lowering of the ground
state energy coming from the kinetic energy that would
be available if single particle hopping were coherent can
still be achieved by the system if it goes over to a super-
conducting state in which Cooper pairs hop coherently
(1,2,13].
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