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General Relativistic Dynamics of Irrotational Dust: Cosmological Implications
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The nonlinear dynamics of cosmological perturbations of an irrotational collisionless fiuid is analyzed
within general relativity. Relativistic and Newtonian solutions are compared, stressing the different role
of boundary conditions in the two theories. Cosmological implications of relativistic effects, already
present at second order in perturbation theory, are studied and the dynamical role of the magnetic part
of the Weyl tensor is elucidated.
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In a recent paper [1] we have shown that the general
relativistic (GR) dynamics of a self-gravitating perfect
fluid is greatly simplified under three assumptions: (i)
the fluid is collisionless (i.e., with zero pressure, p), (ii) it

has zero initial vorticity, ro,b [2], and (iii) the so-called
"magnetic" part of the Weyl tensor, H,b, is zero. The
former two conditions are wide enough to allow for many
cosmological cases, such as the evolution of dark matter
adiabatic perturbations generated during inflation. The
third assumption is more problematic. In linear theory
H,b only contains vector and tensor modes (e.g. , Ref.
[3]): If the vorticity vanishes no vector modes are present
and H, b only contains gravitational waves. Beyond linear

theory the meaning of H,b is less straightforward. It is

reasonable to assume that H,b =0 forbids at least the oc-
currence of gravitational waves. This is particularly clear
in the present context, where, thanks to the absence of
pressure gradients, the motion is geodesic and, if H, b also

vanishes, no spatial gradients appear in the evolution

equations (apart from those contained in convective time
derivatives, which can be dropped by going to a comoving
frame): It is hard to think of any actual wave propaga-
tion with no spatial derivatives appearing in the fluid and

gravitational evolution equations.
Following Ellis [4] we describe the dynamics directly in

terms of observable fluid and geometric quantities: the

mass density p, the expansion scalar e, and three trace-
less, flow-orthogonal and symmetric tensors, the shear,

ep, the so-called "electric" part of the %eyl tensor, Fp,
describing tidal interactions of the fluid element with the

surrounding matter, and its magnetic part Hg. As noted

in Ref. [1], if the magnetic component is switched off, all

the equations for the GR dynamics take a strictly local

form: Each element evolves independently of the others.
Only at the initial time Cauchy data must be consistently
given on a spatial hypersurface. The subsequent evolu-

tion can be entirely followed in Lagrangian form until

caustic formation, when the one-to-one mapping between

fluid elements and space points is lost. %e call such a

system a silent universe, in that no information can be ex-

changed among different fluid elements. This is due to
the causal nature of GR, where signal exchange can only

occur dynamically via gravitational radiation and, in the

case of fluids with nonzero pressure, also via sound waves,
but none of these wave modes is allowed when p =H,b

=0. Because of the advantages of a purely local treat-
ment, this method [ll has recently attracted some atten-
tion. In particular, Croudace et al. [5] have shown the
connection of the GR pancake solution [1] with the Szek-
eres metric [61; Bertschinger and Jain [7] have performed
a detailed study of the Lagrangian dynamics of fluid ele-

ments.
However, the condition H, b =0 cannot be taken as an

exact constraint for the general cosmological case. It has
been shown [8] that the only solutions of Einstein equa-
tions, with p=co,b =H,b=0 are either of Petrov type I,
or conformally flat, or homogeneous and anisotropic of
Bianchi type I, or locally axisyrnmetric (i.e., with two de-

generate shear eigenvalues) and described by a Szekeres
line element [6]. All of these cases require some restric-
tions on the initial data: The exact conditions above are
not suitable to study cosmological structure formation.
However, requiring p =co,b =0 and H,b = 0 appears
more feasible. A small H,b is in fact compatible with ar-

bitrary departures from local axisymmetry of fluid ele-

ments. This is shown by the behavior of perturbations
around Robertson-Walker (RW): Whatever initially sca-
lar perturbations are given, H,b vanishes at first order,
but not beyond. A small value of H,b allows arbitrary ra-

tios among the shear eigenvalues, provided the initial per-

turbations are small. For general initial shapes of the

fluid elements the system will radiate gravitationally dur-

ing nonlinear evolution. However, fully GR numerica1

computations [9] have shown that only a negligible frac-
tion (less than 1%) of the total energy is carried away in

the form of gravitational radiation, during the nonlinear

collapse of collisionless ellipsoids. In spite of these facts,
as our calculations below demonstrate, a nonzero H, b a1-

lows for the influence of the surrounding matter on the

evolution of fluid elements. Although this signal travels

at finite speed, for perturbations on scales much smaller

than the horizon it effectively appears as an instantaneous

Newtonian feature. One might wonder whether during

the late phases of collapse, when local axisymmetry is ex-

pected to be established, the environmental influence on

the evolving fluid element can be neglected and the
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where the dot denotes partial diA'erentiation with respect
to the scale factor a and r/'" is the Levi-Civita tensor rel-

ative to the metric h, fj.
.g'~"=h ' s'~", with s' =1.

The metric tensor evolves according to l h'"h„p=Og.
The above tensors have to satisfy the constraints [4]
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All these are fulfilled at the linear level [3] by growing-
mode scalar initial conditions [I]: hg(ao) = —Dg(ao)
=pp p, where the scalar po, an arbitrary function of the
space coordinates q', is the initial peculiar gravitational
potential, related to Bardeen's gauge-invariant @H [10]
by oo= —(3/2A )4H. These initial conditions corre-
spond to the "seed" metric h,p=b p(1 —

9 A po)—2apo, p, and imply vanishing initial //g (the constant
mode, a:A yo((1, can be neglected in practice, com-
pared to the growing mode ee ago, ,p).

The Lagrangian dynamics is determined by Eqs. (1),
(2), and (3) plus the initial data. One obtains a local Eu-

H, I, =0 condition restored.
General relativistic dynamics .—To describe our sys-

tem we start from the equations of Ref. [4]. We always

work in the comoving synchronous gauge ds = —dt
+a (l)h,pdq'dqp, where a=At /, as for a flat, matter-
dominated RW model (our "background" solution). For
computational convenience we introduce suitably rescaled
quantities: a scaled density fluctuation 5= (6n—Gt p
—1)/a, a peculiar expansion scalar 8 = (3r/2a)(6 —2/l ),
a traceless shear tensor sg= (3t/2a)aI, and a traceless ti-

dal tensor eg
= (3t —/2a)Ep. These quantities can be

grouped in two spacelike tensors: the velocity gradient
tensor 6p—=sp+ & Bp6, related to the covariant derivatives

of the peculiar velocity field; the peculiar gravitational
Jle/d tensor hg—=eg+ —,

' 4bg. We also scale the magnetic

tensor as //g=(3t /2a)Hp. The dynamical equations for

the fluid and the gravitational field are

ill = — (0 +6 ) —0 0"3
2a

lerian description of the fluid [I], using the "generalized
Hubble law" [4]. We have ('=Ogp, where ag' is the

infinitesimal spatial displacement of neighboring ele-

ments. The matrix connecting the Eulerian coordinates
x with the Lagrangian ones q~ is the Jacobian J~
=Bx'/BqP—=b'g+Sg, where Sp is the (symmetric) defor-

mation tensor. Taking (' =dx' =Jg( f'p&, where (fp)
=dqp represent the initial (i.e., Lagrangian) infinitesimal

displacements, one gets Sp =8g+0„'Sg, formally solved

by 2)g(a) =exp f;,dang(a) —bg. Once the Jacobian is

known one gets the metric as h,p=h„p(ao)J,"JI A.s

shown in Refs. [1,8], if //g=0, the tensors OI, hg, h,p

commute and they can be diagonalized simultaneously.
In such a case, Eqs. (I ) and (2) can be reduced to six

first-order equations for the six eigenvalues of 8g and dg.
Along the local principal axes we can set h,p=8,ph~ and

0p =bPp and get h, (a) =h, (ao)exp2f;, daO, (a) In .the
locally axisymmetric case, i.e., when two eigenvalues of
po ~ coincide, a relation exists with particular Szekeres
solutions [6].

Newtonian dynamics The .—equations which govern

the nonlinear dynamics of a collisionless fluid in Newtoni-

an theory (NT) for an expanding universe [11] can be
written in suitably rescaled form as (e.g. , Ref. [12])

u'+ u pu,'p = — (u'+ y,'), (8)

1a+ups p= (upp+a—) ——supp, (9)

~P =p (10)

where p is the peculiar gravitational potential. Dif-

ferentiating the Euler equation (8), defining the sym-

metric tensors 0g—=u'p, with u'=dx'/da, and &I=N,'p, —
and adopting a Lagrangian description, one recovers Eq.
(1), while the continuity equation (9) coincides with the
trace of Eq. (2). It is clear that the NT is degenerate, as
it provides only one equation to determine the tensor hg:
any traceless tensor added to the right-hand side of Eq.
(2), leaves the NT equations unchanged. In order to
completely determine the evolution of the gravitational
field tensor hp one has to resort to its definition in terms
of the potential p, i.e., to a nonlocal theory. Because of
the intrinsic nonlocality of NT [the Poisson equation (10)
is an elliptic, constraint equation] one needs boundary
conditions to determine the dynamics: Contrary to the
GR equations, initial data are not enough. It is well

known (e.g. , Ref. [4]) that the lack of evolution equations
for the traceless part of the gravitational tensor, ep, im-

plies that the NT adds spurious solutions which would be
discarded by the full GR system.

Beyond the Zel'dovich approximation. —In order to
see the behavior of the GR solutions and evaluate the role
of the magnetic term we construct a second order La-
grangian perturbation expansion in the amplitude of the
fluctuations around R%'. It will prove useful to define the
two quantities /ll=—Pl[,„=kl+X2+4 and /l2= r~ 4'l], &o,a
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Ipg~o r) Xfkz+A, ]X3+Xzk,3 where k, are the local ei-

genvalues of the symmetric tensor po p. One immediately
obtains the traces, 0= —p~+a( —p~+ 7 p2) and

=p~+a(p~ —
7 pz), which coincide with those obtained

in Lagrangian second-order NT [13]. After very lengthy
calculations we obtain

Qt9g: ggp+ ( 12p ~pg p+ 6pzbp +5pg ~g p) +gp

(i i)
(here indices are raised by the Kronecker symbol), having

kept only growing modes. The expressions for hp and Bp
will not be reported here for shortness. The traceless ten-
sor gp, representing the contribution due to the magnetic
part, has zero divergence: gp, =0. It can be written as a

convolution gg(q, a) =fd q'Sp(q')f(~q —q'~, a), of the
source Sg =p fp

't7 (2p—~ygp
—2' ~g —bgpz) with the

function f, whose Fourier transform f(k) satisfies the

equation
r

f"'+ f"+ f'+kz f'+ f
T r2 21

(i 2)

a
h,p=b, p 2av'o, p+ (19—v'o, ~(fp I2pivo, p+6pzb, p)

(i4)+ dag~p .

We then have dx'=dq' —apgijdq~+a ypdq~. In NT
one would write the same formal expression, but the irro-
tationality condition would lead to yg=y&, with the po-
tential y satisfying the second-order Poisson equation
[13] & y= ——', pz, which is consistent with the trace of
the GR equation. In other words, the NT eigenvalues v

of yg only need to satisfy the condition P,v, = ——', pz.
In order to get the complete information on the single v, 's

one needs the NT definition of yp as yp, i.e., a nonlocal
information. The GR v, 's also solve the NT equations,
but the reverse is not necessarily true: it depends upon

the boundary conditions used in solving Poisson's equa-
tion.

where a prime denotes diA'erentiation with respect to the
conformal time r =(3/A)t'i. The initial conditions are
f(ro) =f (ro) =f"(ro) =0. Asymptotic solutions of Eq.
(12), confirmed by a numerical check, are f= 2A r /

21k for kr » I and f=A r /378 for kr «1. Perform-

ing a second-order expansion for the deformation tensor
and defining 2)I= —aug p+a yp, we find

+a
lyg

= ( 2p ~gg p+ pzbI+ 2vpg &gp) +
z dang,

a

(i3)
with trace y,'= —

7 p2. The symmetric tensor yp pro-

vides the second-order correction to the deformation ten-

sor, whose first order is the kinematical Zel'dovich ap-
proximation. The metric tensor reads

Inside the horizon, —Suppose that the source, hence

pg~, has some typical scale of variation i, i.e. , I —pgp/

pgp„. If i« r we find 0p = —
pgp

—apgrpgiJ+2ay'p.
The second-order deformation tensor reduces to yp =ibtl'p,

while the metric reads h,p=6'
p
—2apo, p+Q y,p. All

these expressions coincide with those of second-order NT
and can be obtained from the c ~ limit of Eq. (12).
The scalar y carries information on the influence of the
surrounding matter on the dynamics of fluid elements.
Note that y'p produces a tilt of the principal axes of the
first-order deformation tensor, po p.

Outside the horizon W.—hen I » r, gp = (3t /14a)SI,
and the contribution to 6p due to the magnetic term be-
comes negligible. The relevant expressions can be ob-
tained from Eqs. (11), (13), and (14) with gal=0. Per-
turbations with size greater than the Hubble radius
evolve as a separate silent universe: spatial gradients
play no role in this case. However, these local GR eflects
have little cosmological implications, since perturbations
on super-horizon scales usually have very small ampli-
tude, and a linear approximation is suScient. Neverthe-
less, there are a number of formal consequences, which

are worth mentioning. One of these is the absence of 2D
solutions. If one eigenvalue of pop, e.g. , A, 3, vanishes

everywhere, the NT, with suitable boundary conditions,
implies 03(a) =0 or x3(a) =q3, i.e., no motion along the
third axis. This is referred to as "two-dimensional" (2D)
gravitational clustering. As far as the second-order de-

formation tensor is concerned, one would have v]+ v2

7 p2, with p2 =k~X2, and v3 =0. In the GR case, in-

stead, we find v~
= vz = —

v3 = —
7 pz, and 03(a) CO for

a &ao. The motion dynamically impressed along the
third axis soon becomes of the same order of magnitude
as that in the other directions. This eA'ect is due to the
tide-shear coupling terms Sg(M —hfdf„) in the evolution

equation for hp, which reduces to —2p26p to lowest or-

der. The only case when this coupling disappears is when

two A.,'s simultaneously vanish, i.e., for planar symmetry.
Therefore 03(a) =0 is not an exact solution of the GR
equations, unless another 0, also vanishes. As an exam-

ple, no axisymmetric configurations without motion along
the symmetry axis are allowed.

This discussion leads to the main issue: The general
nonlinear dynamics of fluid elements. So far, two analyt-
ical solutions of our system are known: For planar
configurations, A. t =3,2=0, one recovers the Zel'dovich

pancake solution, as shown in Ref. [I]; for exactly spheri-

cal configurations, X, ~
=A,2=A, 3, the local solution is the

well-known top-hat model (e.g. , Ref. [11]). Croudace et

al. [5] looked for solutions representing attractors among
the trajectories of our system with zero magnetic tensor.

They found that both spherical collapse and a perfect
pancake are repellers for general initial conditions, and

argued that the pancake instability is probably due to

having disregarded the contribution of Pp. On the other
hand, Bertschinger and Jain [7] have shown that the in-
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stability of the pancake solution is caused by the tide-
shear coupling in the evolution of the tide, which tends to
destabilize the pancake solution (for general initial condi-
tions) but would stabilize prolate configurations. For
vanishing Pp, a strongly prolate spindle with expansion
along its axis is the generical outcome of collapse, except
for specific initial conditions corresponding to exactly
spherical or planar configurations. Our analysis sho~s
that the dynamical effect causing preferential collapse to
expanding spindles in the /II=0 case is the GR tide-
shear coupling in the tide evolution equation. This term
is not present in NT, although it is compatible with its
equations. This is further illustrated by the collapse of an
infinite homogeneous ellipsoid (I ~), which is de-
scribed by our equations with zero Pp. As is well known,
the NT dynamics favors the formation of oblate spheroids
(e.g. , Ref. [14]), pancakelike objects with one collapsing
axis and the other two tending to a finite size (apart from
initial conditions corresponding to an initial prolate
spheroid). The GR collapse (e.g. , Ref. [15]) favors the
formation of prolate spheroids, collapsing filaments with

expansion along their symmetry axis. However, as our
second-order calculations show, the evolution of fluid ele-
ments as isolated ellipsoids does not apply to perturba-
tions on scales smaller than the Hubble radius: here non-
local effect play a fundamental role. The actual non-
linear dynamics would generally result from the competi-
tion of the local GR tide-shear coupling, causing pancake
instability, and the nonlocal environmental influence, car-
ried by the magnetic part of the Weyl tensor. During the
early deviations from linear evolution, as described by
Lagrangian second-order perturbation theory, the latter
effect dominates; however, extending this conclusion to
the late strongly nonlinear phases would require further
study.

Finally, as a result of this analysis, we are able to cal-
culate how many gravitational waves are produced within
a second-order approximation (remember that at this or-
der the magnetic tensor is traceless and transverse, so it is
related to gravitational radiation [3]). Outside the hor-
izon H,it= (4a /7t)(e, „typo pyre, +sit„~o,pg„) ", while in-

side the horizon H, tt decays as 1/a. Only a tiny amount
of gravitational waves is produced on subhorizon scales at
this level; however, their dynamical role is far from being
negligible.
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