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We analyze the low energy behavior of interacting fermions in continuous dimensions d between one
and two. It is shown that Fermi liquid fixed points are stable with respect to residual scattering of quasi-
particles by regular interactions in any dimension above one, while the structure of corrections to quasi-
particle behavior changes drastically below two dimensions. The crossover from Luttinger liquid behav-

ior in l D to Fermi liquid behavior in higher dimensions is described by a tomographic Luttinger model

with effective interactions approaching zero with a power d —
1 of the distance from the Fermi surface.
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Three dimensional systems of interacting fermions may
follow Fermi liquid behavior down to very low energy [I].
The residual scattering of quasiparticles usually destroys
the Fermi liquid phase only via spontaneous symmetry
breaking on an energy scale T, which is situated orders of
magnitude below the Fermi energy. In this case, for low

energies above T, one observes scaling behavior governed

by a Fermi liquid fixed point. The residual scattering
leads, however, to important corrections to scaling, in

particular to a finite decay rate for quasiparticles of order

(~k~
—kF) . By contrast, in ID Fermi liquid behavior

never develops, but is substituted by another type of scale
invariant low energy asymptotics, the Luttinger liquid be-

havior [2,3].
In this Letter we analyze the crossover from 1D Lut-

tinger liquid behavior to Fermi liquid behavior as a func-

tion of continuous dimensionality. The dominant scatter-

ing processes are summed to all orders in the interaction

by exploiting an asymptotic conservation law, which ex-

tends the separate conservation of charge and spin on

each point of the Fermi surface known from 1D systems
[4] to higher dimensions. In the case of regular renor-

malized interactions we find that quasiparticles are

asymptotically well defined in any dimension above one,
but the lifetime and other subleading corrections deviate

from the conventional Fermi liquid behavior known from

3D systems in any dimension below two. This result, be-

sides deepening our understanding of Fermi and Lut-

tinger liquids, reveals the sensibility of 2D systems to

singular interactions, which may appear, in particular, in

systems near a Mott transition [5].
We consider a d-dimensional system of itinerant in-

teracting spin- 2 fermions. %e assume that high energy

states have already been integrated out, such that we end

up with an effective action describing low-lying excita-
tions close to the Fermi surface. Neglecting irrelevant

terms, the low energy behavior can thus be described by a
Hamiltonian of the form H =Ho+HI, where

d"k . =Sd i„d)k( (k( '„d8(sin8)

where Sd =2zd~ /I (d/2) is the surface of the d-
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Here ak and ak are creation and annihilation operators
for fermions with momentum k and spin projection cr, re-

spectively; k, is the distance of k from the Fermi surface„
defined positively outside and negatively inside; V is the

volume of the system. All momentum sums are restricted

by the condition that the particles lie in a thin shell of
width A«kF around the Fermi surface. We restrict our-

selves to cases where the velocities vi, and the effective
t

couplings gft, (q) are slowly varying functions on the

scale set by A. Most of the explicit results will be given

for a rotationally invariant system with a spherical Fermi
surface and a constant Fermi velocity i F.

The continuation of the theory to noninteger dimen-

sions is obtained as usual by analytic continuation of
Feynman diagrams, defined for general integer d, in the

complex d plane. For our purposes it will be sufficient to
continue momentum integrals of functions f(k) which

depend on k only via ~k( and an angle 8 between k and

another momentum which is fixed. In these cases one can

use

and
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FIG. I. tmZ(p, g) from second order perturbation theory as

function of g for fixed p, =O. 1kF in dimensions 8= 1.5, 2, and 3

(kF =I F =l, arbitrary units on y axis).
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dimensional unit sphere. In the limit d 1 one has
S~-)-d —1, and thus Sy-i(sin8) b(8)+8(8 —)r)
as expected.

We begin our analysis by calculating the self-energy to
second order in a constant coupling g acting between op-
posite spins. Its imaginary part can be written in terms
of the bare particle-hole bubble Ho as

2 d k
ImZ(p, &) =sgn(&)g'

~ n(g) (2)r)d
I m11p(p —k,(—(),),

(3)

where (~ =vFk„,k„=~k~
—kF, and 0 (() is the set of all k

with 0&(g&( for g&0, while (&gi, &0 for (&0. For
small energies, ImHO can be obtained in closed form for

any d. For max(0, (q(
—2kF) & (o/i z & )q(, one finds

Imllp(q, o)) =— 8x (2+[ ()' "~'[I —(co/[q[)']'~ ""
(4)r)~ d —

1 (q(

)([(2—
fqf +ro)(" ""—(2 —

fq[
—o))" ' "'e(2 —

Jqf
—ro)3, (4)

where q =q/kF and ro =ro/(FkF, while ImI1p =0 for other
ro&0 and ImI1p(q, —a)) =Im11p(q, ro). Note that con-
tinuation to real co has been performed via co+i0+ for
ro & 0 and ro —i 0+ for ro & 0.

Typical results for ImZ(p, g) are shown in Fig. 1. In

3D we observe the well-known quadratic energy depen-
dence, ImZix(, without any special feature at g-gii.
For I & d ~ 2 contributions of order ( are superposed by
larger p-dependent terms, which are generated by for-
ward (small momentum transfer q) and Cooper scatter-
ing processes. In d &2, for small p„=~p~—kF and (,
the self-energy scales as ImZ(p, ()=p„"ImZ(g/p„), and

diverges in g g~ as

( ImZ(p () ( C 2kd —I, —(d+ l)(2(( g (

d —2 (5)

where Cq is a constant depending only on dimensionality.
This singularity is exclusively due to forward scattering of
particles with opposite spin and almost parallel momenta.
Forward scattering of particles with antiparallel momenta

yields a contribution proportional to (f —(ii) 8(( —fii) in

d&2.
In a system with repulsive bare couplings the scattering

amplitudes associated with Cooper processes initially
scale to zero at low energies; ultimately some of them

may increase due to attractive channels in the renormal-
ized low energy amplitudes, leading thus to superconduc-
tivity. We are interested in low energy behavior of nor-
mal metals above this latter energy scale (which may be
extremely small), and will therefore neglect Cooper pro-
cesses, concentrating only on forward scattering.

In d & 2, the single particle propagator G is drastically
affected by the contributions of forward scattering to the
second order self-energy. Let us consider the 1D case
first. In d=l, forward scattering between particles with

opposite momenta yields a contribution proportional to
((—gii) 8(g —gii) to ImZ, which, via Kramers-Kronig,
yields a real part proportional to ((—fz) Iog(P —()i).
This leads to a wave function renormalization Zz=(l
—8Z/8() ' ix: I/log(g —

g&) 0 as g g&, which is the
well-known perturbative signal for the breakdown of Fer-
mi liquid theory in one dimension [2). Forward scatter-
ing between particles with parallel mornenta does not
contribute to the wave function renormalization, but nev-
ertheless destroys the quasiparticle pole in the propaga-

tor, leading to separation of spin and charge degrees of
freedom [2]. In contrast to common wisdom this latter
effect also has a clear perturbative signal: In d I, (5)
reduces to ~lmZ~ —(g /8)rvF)g B(g —vFp, ), yielding, by

Kramers-Kronig, a real part ReZ- (g /8)r) p, /(g —vF

xp„). Inserting this into G =(g —
g~

—Z) ' one obtains

a propagator which has two poles instead of one, i.e., the

spectral function becomes a sum of two 8 functions with

weight & each.
In 1 & d & 2 the perturbatively calculated wave func-

tion renormalization is finite, but the forward scattering
processes of particles with almost parallel momenta still

have dramatic consequences: Z(p, g) has an algebraic
divergence proportional to (g —

g~) for g g~, lead-

ing to two well-separated peaks of comparable weight in

the spectral function. Their width is finite in d & I, but

smaller than the distance between the two. Hence,
second order perturbation theory seems to indicate de-

struction of the quasiparticle pole due to forward scatter-
ing of particles with almost parallel momenta in any di-

mension below two. However, the divergence found in Z

clearly forces us to go beyond perturbation theory even

for weak coupling constants.
As a second step, we calculate the self-energy within

the random phase approximation (RPA), expecting a
smoothing of singularities. For a constant coupling be-
tween opposite spins, the RPA self-energy is given by

d k
I mZ(p, &) =sgn(&) ~ n(g) (2)r)d

ImD(p —k, g
—g~), (6)

where D is the effective interaction between parallel spins,
D(q) =g IIp(q)/[I —g 11()(q)], q =(q, ro). For small q
and ro, D(q) depends only via ro/~q~ on q, in any dimen-

sion, and has an undamped pole associated to a charge
density mode (zero sound) at ro =u, (q~, where u, is a ve-

locity larger than vF. Close to one dimension, D also has
a damped pole at ro =u, ~q~, u, & vF, which becomes
sharp only in d=1.

In d & 2 the leading contributions to ImZ still scale as
lmZ(p, () =p,"ImZ((/p, ). However, the divergence in

g=(& has disappeared, and is substituted by two finite
peaks below and above (&, which are due to low energy
charge and spin density Auctuations. In contrast to the
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perturbative result, X is now a bounded function. Hence,
in d & 1 and for p su%ciently close to the Fermi surface,
the RPA self-energy does not destroy the quasiparticle
pole, but will give it only a width of order p,".

3 priori RPA is not more reliable than perturbation
theory is, and is known to be insufficient in d —1. Hence
we will now try to sum scattering processes with small

momentum transfers to all orders in the couplings. In
d=1 this problem is known to be exactly solvable, as a
consequence of a peculiar exact conservation law, namely
conservation of charge and spin separately on each Fermi
point [4,6]. In d & I this conservation law is not exact,
but the asymptotic dominance of forward scattering ob-

served in the perturbative results indicates that in d & 2 it

still holds asymptotically, with increasing accuracy as the
Fermi surface is approached. We will now exploit this

property via Ward identities.
We will calculate the eA'ect of residual scattering on

the single particle propagator near a (tentative) Fermi
liquid fixed point in I & d & 2, using the effective low en-

ergy model (I), and keeping only couplings gpss (q) with

small momentum transfer ~q ~
& A && kF, we further as-

sume that

graf

(q) is a slowly varying function of k and k'.

The self-energy correction due to small-q residual

scattering obeys the Dyson equation

jg(q) = (p„j) =P (I,vp)at(k —q/2)a (k+q/2)
k

(9)

is the current operator associated with Ho. The index
"irr" indicates truncation of external fermion lines and

omission of diagrams which can be split in two pieces by

cutting a single interaction line. The restriction to small

momentum transfers ~q~ & A&&kF implies that, when in-

serted in A" (p;q), (8), the k sum in (9) is effectively re-

duced to momenta k-p. This justifies the simplified

form (7) of the Dyson equation, involving only Dff in-

stead of Dpp' ~ Using

Go (k+q/2) —Go ' (k —q/2) =qo —
q vq+ O(q'),

~here Gp is the bare propagator, one can prove the Ward
identity

qoA0(p;q) —
q A(p;q) =G '(p+q/2) —G '(p —q/2)

which is valid at least to order q . This identity, which

Z(p) =i Dr (q) G (p —q) Ao(p —q/2;q ), (7)

where f~ is a shorthand notation for (2z) "+' fdqo
x fd q, D&(q) =D&&(q) is the effective interaction be-

tween particles with parallel spin and momenta, and A is

the density component of the irreducible current vertex
A". The latter is defined by

A" (p;q ) = —(j"(q) a (p —q/2) a t (p+ q/2) );„„,(8)

where

Y(p;q) =q [A(p;q) vpA —(p;q)]/A (p;q). (12)

In d= I, Y vanishes identically and (11) reduces to the
well-known Ward identity following from separate charge
and spin conservation on each Fermi point [4,6]. For
small momentum transfers, Y is generally very small even

in d & I, since the velocities v& contributing to A(p;q) are
almost parallel to vp, nevertheless Y may become impor-

tant for qo-q v&, since it cuts off the pole in (11).
The Ward identity (11) justifies the construction of the

effective interaction D&(q) with bare bubbles instead of'

dressed ones: as in ID [41, vertex and self-energy correc-
tions cancel each other in bubbles if Y is small. We now

insert (I I) with V approximated by zero in the Dyson

equation (7), obtaining thus a closed equation for G:

i D p(p
—p')

(p, -g, )G(p) =I+„," po po v(p+p')/2 (p p )

x G(p'), (13)

where a term of the form —SpG(p) on the right hand

side has been absorbed by shifting the chemical potential,

keeping thus the density fixed. For a rotationally invari-

ant system, G(p) =G(p„,po) depends only on the distance
of p from the Fermi surface; further i k =i F is a constant,
i.e. , vtz+&1i2 (p —p') =t F(p, —p„')+O(q ). The only

angular dependence is now in Dr(p —p'). For small

q =(q, qo) and regular couplings, D&(q) depends only on

the ratios q„/qo and q, /qo, i.e., D~(q) =D(q„/qo,q, /qo),
where q, =q p and q, =(q —q„) are the radial and

tangential components of q. One thus derives from (13)

iDA(p, pr, po —po)—
(po ~'Fp. )G(p"po) =I+„

0'~' Po Po t'F P~ P/

where

x G(p,',po),

t (A2 —rI,')' '

(14)

x D (q /qo, q&/qo)

In the limit d 1 one has D =D and one thus recovers
the exact equation for the propagator of the 10 Luttinger
model [6]. In I & d & 2, q, is asymptotically peaked at
small values, thus justifying the neglect of V in A (p;q)

reflects charge and spin conservation, is exact only

asymptotically because we have neglected irrelevant
terms in j . Even in 1D, the identity is exact only for
models with linear dispersion, but asymptotically exact in

general.
Using the above Ward identity, one may write the den-

sity vertex A in the form

A'(p;q) =0 G '(p+q/2) —G '(p —q/2)
qo

—
q vp

—V(p;q)

where
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for qo«Fq, . For qo iFq„ the vertex is drastically
changed by Y; however, since q, and qo are integrated in-

dependently in (14), this error carries over to G(p„pp)
only if contributions from qo ('Fq, are peaked, which is

the case only for pp —vpp„0. In this latter limit (14)
is not reliable in d & 1 and corrections due to Y&0 should
be considered.

For nonspherical systems we would have obtained an
equation similar to (14) with D and G containing the po-
sition on the Fermi surface as a parameter. We have
thus arrived at a description of the low energy behavior of
G in terms of a "tomographic Luttinger model" of the
sort introduced by Anderson as an effective model dealing
with singular forward scattering in 2D systems [5]. In
our case (regular couplings, I &d & 2), however, the
effective interaction scales to zero at low energy, since
( I 5) implies

D&A(kq„,kqp) =X 'DA(q„qp) . (i 6)

The solution of (14) proceeds as in ID [6], by trans-
forming to real I+ I dimensional spacetime x =(r, t);
G(r, t) is obtained in the form

G(r, t) =e ' 'Gp(r, t), (i7)

where L(r, t) is the Fourier transform of iD(q„qp)/
[qp

—vFq, +i0+s(qp)], where s(qp) is the sign of qp.
The result for t =0 is particularly simple, namely,

L(r, 0) —L, = g Lg(r'-de"(d ""t'—Ad ') (Ig)
a + I

+
for rA))1, where Lo are cutoff-independent numbers.
In d I, Lp diverges like (d —I) ', i.e., one recovers
the well-known anomalous scaling G(r, 0) a: I/r'+", rt

&0, while G(r, 0) CX: I/r for r ~ in d & 1. Fourier
transforming G(r, 0) yields the momentum distribution
ng near the Fermi surface. In d & 1, ng has a finite
discontinuity given by

dimensions" where the low energy behavior undergoes
drastic changes. Below two dimensions, long wavelength
spin and charge density fluctuations yield the dominant
contribution to the self-energy, and make the inverse life-
time scale as (k —kF) instead of the square law valid
above 2D. These scattering corrections do not, however,
destroy the Fermi liquid fixed point until d= 1 is reached,
where small-q scattering becomes marginal and leads to
Luttinger liquid behavior. This latter result extends an
earlier analysis by Ueda and Rice [7], who checked the
stability of the Fermi liquid fixed point in d & I by per-
forming an t. expansion around d= l. Because of asymp-
totic conservation of charge and spin on each Fermi
point, the dimensional crossover of the momentum distri-
bution function and other quantities can be described by
a tomographic Luttinger model [5] with scale-dependent
effective interactions.

In contrast to the situation in one dimension, in d & 1

Luttinger liquid behavior is not obtained by summing
perturbation theory to all orders, at least not in a one-
band model with short range interactions. Additional de-
grees of freedom or nonperturbative phenomena leading
to singular low energy interactions are required. Clearly
much of the physics encountered here for a system with
regular interactions in d & 2 carries over to 2D systems
with singular forward scattering [5], where asymptotic
conservation of charge and spin on each Fermi point will
also play an important role. Our result indicates that
weak singularities are sufficient to alter the behavior of
the lifetime of quasiparticles, but a strong singularity is
required to destroy the Fermi liquid fixed point in two di-
mensions.

This work has been supported by the European
Economic Community under Contract No. SC1* 0222-
C(EDB).

h,ng, =ZAe

where Zq is the wave function renormalization performed
when passing from the bare model to the effective model
(I), and Lp=A (Lp++Lp ). For d I, /Jnk, vanishes
exponentially.

The substitution of Y by zero in (11) is too crude to
determine the asymptotic behavior of G(p„,pp) in the
limit p„pp 0 with pp/vFp„ I, where the solution of
(14) develops unphysical singularities, which we expect to
be eliminated by Y. However, the structure of the solu-
tion (14) for pp&vFp, indicates that the limit p„,pp 0 is
already well described by RPA in d & 1, i.e., the singular-
ity (5) is obviously an artifact of standard perturbation
theory.

In summary, we have shown that a normal Fermi sys-
tem with regular asymptotic interactions has two "critical
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