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Complete Two-Loop Binding Correction to the Lamb Shift
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The binding correction of the two-loop contribution to the Lamb shift in hydrogenlike atoms is
calculated by a combined analytical and numerical method. A neve theoretical value for the Lamb
shift is given and the proton radius puzzle is solved in favor of the value obtained by the Mainz
group.
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The Lamb shift plays a fundamental role in testing
bound state quantum electrodynamics. Radio-frequency
measurements of the 2S 2P sp-litting in hydrogen have
reached an accuracy of several kHz. Further progress is
limited by the linewidth of 2Pi/z state, which is of the
order of 100 MHz. In contrast, optical high resolution
spectroscopy based on two-photon transitions between
hydrogen S states has no such restrictive barrier. In fact,
the most recent measurement of Hansch and co-workers

[1] of the 1S ground state Lamb shift,

&I.(1S) = 8172.86(6) MHz,

has a relative accuracy greater than the best radio-
frequency measurement of the 2S-2P splitting, see Eq.
(31).

For the comparison with theoretical values, we have
two contradicting experimental results for the proton
charge radius: r„= 0.805(11)fm, r„= 0.862(12) fm,
given by Refs. [2] and [3], respectively. As is known

[1,4], the theoretical predictions derived with the newer
measurement of r„= 0.862(12) fm are not in a good
agreement with the Lamb shift experiments. In order
to improve the theoretical predictions we complete the
evaluation of the nonrecoil corrections of order a (Z ct;),
where n is the fine structure constant and Z is the atomic
number. We show that this correction explains this dis-

crepancy, and agreement between theory and experiment
is achieved.

The remaining corrections of comparable magnitude
are known with a precision of order 1 kHz for 2S-2P
Lamb shift. For example, the pure recoil correction of
order (m/M)(Zo)s has been calculated by Doncheski,
Grotch, and Erickson [4], in spite of the fact that there
is still no satisfactory and effective scheme for the two
body problem. The binding corrections to the one-loop
self-energy of order ct. (Z o;)s have been calculated to high
precision in [5] where a novel analytical method has been
introduced. For other corrections see the very good re-
view of Sapirstein and Yennie [6]. The two-loop correc-
tion to the hyper6ne splitting in hydrogen and muonium,
similar to that presented here, has been recently calcu-
lated by Kinoshita [7].

We concentrate now on the binding correction to the
two-loop contribution. It is a general feature of bound
state calculations in quantum electrodynamics that, in

addition to a lower order contribution, each diagram also
gives higher orders in Z ct. and Z a, ln(Z o,) terms. In the
two-loop contribution, for example (we put electron mass
m = 1, speed of light c = 1, and proton mass M = oo),

n ~ (Zci)4AE= (B4o+ Za Bso+ )
7r n3 (2)

The lowest order term is given by 84o and the binding
correction by B5o., the Grst index gives the power in Z o,

and the second the power in the ln(Zet. ). The B4o co-
efFicient has been known for a long time [8], and for its
calculation one can use the so called on-shell approxima-
tion. For an introduction to two-loop Lamb shift calcu-
lations see [9]. Under the on-shell approximation, B4o is

determined by the value and derivative of the two-loop
electron form factors Fz and Fi (for their definition see

[10]) at tIz = qz = 0:

B4o= — 4' o +F2O (3)

The binding corrections to the two-loop contribution
with a closed fermion loop have been calculated in the
series of papers by Eides and co-workers [ll] and by us

in [12]. The present paper provides an evaluation of the
most difficult and dominant two-loop corrections: those
with the two photon loops. Some partial results have al-

ready been obtained [13]. The remaining three-loop con-

tribution, although not yet calculated, is expected to give
less then 1 kHz for the 2S state (roughly o./7r times the
two-loop contribution), below the current experimental
precision, Eqs. (30)—(32).

As was first noticed by Eides et aL [ll], all diagrams
responsible for the binding correction could be gener-
ated from the fermion line with two vertices, taking
all possible two-loop dressings. The diagrams without
closed fermion loops are represented in Fig. 1, where

the fermion external legs are on the mass shell. The ex-
pression derived from this diagram can be written in the
following shortened form:
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[14]:

ZR(p) =
4 (P —1)' P Y(p)

(1 -p')')
%e use the nonstandard notation p = p . Calculating

the traces for the first diagram a from Fig. 1 we simply

get

9 (2) 10 (2) 12
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FIG. 1. Diagrams representing two-loop binding correc-
tions to the Lamb shiR. The closed fermion loops are excluded
here. Crosses mean insertion of Coulomb vertex. Some dia-

grams are counted twice, as is denoted by "(2)." All diagrams
are implicitly renormalized, thus there is no loop on external
legs.

~E = ~(0)
p (" ) ~ l(AR(0, p, o)

(2 )'
1+2I'R o, p( ) —m

& (»+I)
+~R(p)

(~ ), l 4 (4)
- 8

where A, I', Z are two-loop two-, one-, and zero-vertex
functions with implicit indices equal to 0. 8 means the
separation of the constant term for p = 0, which is re-
sponsible for the leading order contribution. $(0) is an
electron wave function at the origin.

The expression for the two-loop correction to energy
shift can be written as

(a)' (za))

f d))) f
d) kg f

d) k, )

x [f(p) k» ~&) —f(o) ki) It2)] )

where f is a function depending on the particular di-
agram. The contribution of any renormalized diagram
diverges with the photon mass p in Feynman gauge like

p s)'z, making numerical integration difficult. There are
at least two ways to avoid this problem. The first is the
use of the Yennie gauge, where each diagram gives a finite
contribution. The second way is to perform the integrals
with respect to ki and kz analytically for small p and
numerically for larger p. The first method we apply for
the gauge independent set of diagrams a, b, and c from
Fig. 1, while the rest of the (also gauge independent) set
of 16 diagrams is calculated with the second method.

The Yennie gauge is particularly useful, because of its
remarkable infrared properties. This gauge also provides
a simple form of the renormalized one-loop self-energy

ds p (4mcr)
b,Ei)=2)It(0) (2x)s lE pz )

x(Gi+ p Gs) Y(p),
3ol

dsp (4xot'i 2Gi +2p GiGs

(1o)

G, can be expressed by the integral of their imaginary

parts G+ for negative p, i.e. ,

Gi(p') = p' &(q')»

Gs(p') = — d(q'), , Gs (q')
@2 +q2

where the index A for any function f means f+(qz) =
f( q+i e) ——f(—q —i e) /2zi. For these imaginary

parts, we derive the expressions

(12)

G+ = ——+ + 1 ———e(q —2)
30! 2 Q 4 1

3 2 (1 + q2)2 Q2

/2 ql+ I

——
l

arctan(q)
6)

—e(q —2) arccosl —
l

Eq)
3a

1+qz) 6 (1+q

where 8 is a step function. The remaining analytical and

numencal ~ntegratson gmes

Fg ——9.28369,

Fc ———6.98416,
in agreement with the results obtained in [13].
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F. =O, (7)

where we introduce a notation that the index in F de-

notes a contribution from the related diagram from Fig.
1. For the remaining two diagrams b and c from Fig. 1,
we also need a renormalized vertex function. We decom-

pose it in the following way:

I'(0 p)R = (»+ I) (»+ I)
2

Gi+ p pGs+, (8)
2

where the dots indicate remaining terms that contain»—
I on the left hand side. These do not contribute after the
trace is performed. The energy shift, written in terms of

G;, reads
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The remaining 16 diagrams from Fig. 1 we calculated
using the second method. The energy shift as described
by F in Eq. (5) can be rewritten to the form

1F—
4

d3 1
, „—, f(p') —f(o), (17)

f(p') —f(o) = p' d(q'). . . f"(q') (»)q' p'+q'

where f is an analytical function, with a branch cut along
the negative axis. From the Cauchy theorem we have

(19)

In this way we convert the integral to a form suitable for
further analytical treatment. We calculate analytically
the expansion of f (q ) up to q P. This is done by writ-

ing a general procedure in symbolic language [15], which
evaluates diagram by diagram. The fact that we calculate
only the imaginary part of f ( q—) significantly simplified
the calculation and, for example, the overall renormaliza-
tion counterterms canceled automatically. The details of
this calculation and what follows will be given elsewhere.
The result of the expansion of f in q is

fA( 2)
32q

27
(104qz

+I

1582 q4 154 739 q6

675 33075
48q 41116q

5 1575

29253 601 q8 15 752 340547 q

5 953 500 1 440 747 000
129 796 qs 495 111qlo

+ + log q

The tests of this calculation were the cancellation of in-

frared divergences (present in each separate diagram),
ultraviolet divergences (counterterms were calculated in-

dependently), and the constant term in Eq. (20).
The value of f+ for larger q was calculated numeri-

cally. We partially follow and adopt the numerical meth-
ods expanded by Kinoshita [7,16]. We introduce Feyn-
man parameters to collect all the denominators, integrate
with respect to ki and kz (with photon mass )u present
to prevent the logarithmic infrared divergency), and per-
form pointwise renormalization. At this stage we perform
a test by evaluating f(p ) for small p and by extrapolat-
ing to p = 0. This number is also known analytically
because

=
(
—

) (8+((o)+~+~(o)l

+ 3 z log(2) — = 2.81849,
36 108 2

several values of the photon mass p, . The final result is
obtained by fitting a function f(p) = a + b p + c p, , and
by extrapolating to p, = 0.

The analytical part gives

F,„=—17.03(2), (22)

where the error comes from ending the expansion Eq.
(20) at q . It is estimated based on the observation that
this expansion is not far from a geometric series. The
numerical part gives

F um = —9 1(5) (23)

where the error is 1 standard deviation. To estimate
this error we assumed that the probability distributions
for different p are correlated, i.e. , proportional. This is
because we used the same seed for the random number
generator for different values of p, .

The sum of all diagrams presented in Fig. 1 is

(21) F, = F.„+F„„+F.+F, +F, = -23.9(5). (24)
where Fi and Fz are two-loop electron form factors (here
without closed fermion loop).

After integration over ki, kz, we obtain a sum of terms
of the form: 1/(apz+b)", n = 1, 2, 3, 1 (anp~+b), where
a and b are functions of Feynman parameters. The imag-

inary part of the above, for negative pz, is a delta func-

tion or its derivatives. These entities are not suitable
for direct numerical integration. Thus we integrate with
respect to q~ three times by parts to convert all delta
functions to theta functions. The same procedure has to
be applied to the analytical part Eq. (20) in order to
have the final result unchanged. Here we perform the
last and most significant test and compare the numeri-

cally evaluated fA(qz) with the analytical calculation at
qz = 1/2.

Next, the integral in q~ is done. The analytical part
from 0 to 1/2 and the numerical part from 1/2 to oo.
All the diagrams are separately numerically integrated
[17] using the Monte Carlo routine vEGAs [18]. We per-
formed up to 10 evaluations, for each diagram and for
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AFI, (lS) = —291(7) kHz,

AFI. (2S) = —36.5(9) kHz.
(26)

(27)

The result for the desired coeScient Bso is then the sum
of the results from diagrams with the closed fermion loop
(calculated in the previous paper = 2.71 [12]) and of FI

Bgp = —21.2(5) . (25)

A few words should be said about the reliability of
this result. During the calculation we performed several
tests: the cancellation of ultraviolet and infrared diver-
gences, the cancellation of a constant term in Eq. (20),
a comparison of the numerically calculated f(0) with the
analytical result from the two-loop electron vertex func-
tion, and a comparison of the numerical and analytical
parts of fA at qz = 1/2. All these tests were passed
successfully, but in our opinion the confirmation of the
above result by an independent group is nevertheless of
great importance.

The obtained results give corrections:
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The new theoretical values for the Lamb shift, using for

the proton radius the experimental value of the Mainz

group r„=0.862(12) fm [3] are

EI, (28 2P-) = 1057838(6)kHz, (28)

El, (28 2P) = -1057845(9) kHz, (31)

and with the recent high precision Doppler-free two-
photon measurement of Weitz et aL [1],
Er, (4S) —Er, (2S) —

4 [EL,(2S) —El, (1S)]
= 868630(12)kHz. (32)

In contrast to our previous paper [5] we do not include
in the above theoretical results the values of Arq, A7o
coefficients. This is because, in our opinion, the current
numerical results Mohr [21] have insufficient accuracy to
estimate these higher order terms from the extrapolation.
We also do not include the uncertainty from these terms
to the above errors. There is an additional uncertainty
from three-loop correction which is also not included in
the above errors. This correction is determined by the
value and derivative of three-loop form factors at q = 0
[Eq. (3)] and can be calculated in a similar way to the
electron anomalous magnetic moment.

Our calculation indicates that the older experimental
value for the proton radius r„= 0.805(11) [2], which
decreases the 28 Lamb shift by about 18 kHz, is incorrect.

The main uncertainty for the hydrogen Lamb shift is
now given by the error in the proton radius (3.5 kHz); a
reduction of this uncertainty is of crucial importance for
future tests of @ED in the hydrogen atom. The reliable
measurement of nuclear radii is important also, because
for the hydrogen-deuterium isotope shift [22] the difFer-

ence between the theoretical and experimental value is
108 kHz, which is 5 times more than the experimental
error.

I gratefully acknowledge Professor T. Kinoshita for in-
teresting conversations, for a detailed description of his
recent muonium calculation, and for giving me his paper
prior to publication. I express my thanks to Professor M.
Eides for informing me about his and his collaborators'
calculation. I thank very much Professor T. W. Hansch
for stimulation and for keeping me in touch with the
results of high precision Doppler-free two-photon spec-
troscopy experiments.

Er, (4S) —EI,(2S) —
4 [EL,(28) —EL, (1S)]

= 868623(5) kHz. (29)

There is an excellent agreement with the very recent ex-
periment of Hagley and Pipkin [19],where the Lamb shift
has been extracted from the measured 28'/z-2Ps/z fine
structure interval

El, (28-2P) = 1057839(12)kHz. (30)

While we have a good agreement with a direct measure-
ment of Lundeen and Pipkin [20],
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