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A lightlike Wilson loop is computed in perturbation theory up to O(g*) for pure Yang-Mills
theory in 141 dimensions, using Feynman and light-cone gauges to check its gauge invariance.
After dimensional regularization in intermediate steps, a finite gauge invariant result is obtained,
which, however, does not exhibit Abelian exponentiation. Our result is at variance with the common
belief that pure Yang-Mills theory is free in 141 dimensions, apart perhaps from topological effects.

PACS numbers: 11.10.Kk, 11.15.Bt

While an abundant literature is by now available con-
cerning “Euclidean” QCD in two dimensions [1-3] com-
paratively fewer investigations have been performed in
Minkowskian 1+1 dimensions. It is a common belief,
originating from the pioneering work of 't Hooft [4], that
Yang-Mills theory (YMT) without fermions in two di-
mensions is a free theory apart perhaps from topological
effects. As a matter of fact, the gauge field should not
be endowed with any dynamical degree of freedom. This
can naively be seen in axial gauges, where one of the
components of the vector potential is set equal to zero.
It is also at the root of the possibility of calculating the
mesonic spectrum in the large N approximation [4,5],
when quarks are introduced.

However, the theory exhibits severe infrared (IR) di-
vergences which need to be regularized. In Ref. [4] an
explicit IR cutoff is advocated, which turns out to be un-
influent in the bound state equation; a Cauchy principal
value (CPV) prescription in handling such IR singular-
ity leads indeed to the same result [6]. Still, difficulties
in performing a Wick’s rotation in those conditions have
been pointed out (7], and a causal prescription for the
IR singularity has been advocated, leading to a quite
different solution for the vector propagator. In this con-
text the bound state equation with vanishing bare quark
masses (8] has solutions with quite different properties,
when compared with the ones of Refs. [4,5].

In view of the above-mentioned controversial results
and of the fact that “pure” YMT does not immediately
look free in Feynman gauge, where degrees of freedom of
a “ghost” type are present, we have thought it worthwhile
to perform a test on a gauge invariant quantity. We have
chosen a rectangular Wilson loop with lightlike sides, di-
rected along the vectors ny, = (T, ~T) and n}, = (L, L),
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parametrized according to the equations
Cy : ¥ (t) = n*Ht,
Cs : z#(t) = n** + ntt,
Cs: z#(t) = n* +n*™(1 —¢t),
Cy:zH(t) =n*(1-t), 0<t<L

(1)

This contour has been considered in Refs. [9,10] for an
analogous test of gauge invariance in 143 dimensions. Its
lightlike character forces a Minkowski treatment.

We shall perform a perturbative calculation up to
O(g*); topological effects will not be considered. We
can anticipate the unexpected results we will obtain: the
gauge invariant theory is not free at d=1+1, at vari-
ance with the commonly accepted behavior; the theory
ind=1+(D -1) is “discontinuous” in the limit D — 2.

The calculation in Feynman gauge.—In Feynman
gauge already the free vector propagator does not exist
as a tempered distribution in 1+1 dimensions. A regular-
ization is thereby mandatory and we choose from here on
to adopt the dimensional regularization, which preserves
gauge invariance:

x—D/2

v
4
The calculation in Feynman gauge of the lightlike Wil-
son loop (1), in 1+ (D — 1) dimensions up to O(g*) has
been performed in Ref. [9] and will not be repeated here.
Actually in Ref. [9] part of the contribution from graphs
containing three vector lines has only been given as a
Laurent expansion around D = 4, owing to its complex-
ity. In the following we shall exhibit its general expres-
sion in terms of a generalized hypergeometric series and
then we shall expand it around D = 2. We only report

Dy, (z) = ~gu T(D/2 - 1)(~2* +ie)' P72 (2)
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for the reader’s benefit the final results concerning the
contributions of the various diagrams.
Single vector exchange [O(g?)] gives

~ 2
Q) _ g I(D/2-1)
== (3) o

c, ®3)
where §2 = g2(u?)P/2-1, u being the running renormal-
ization mass, Cr the Casimir operator of the fundamen-
tal representation of color su(N), and

C = [(2rpPnn* +i€)2~P/? 4 (—2mpPnn* +i€)2~D/2).
(4)

One immediately notices that the propagator poleat D =
2 is canceled after integration over the contour, leading
to a finite result.

At O(g?) we can restrict ourselves to the so-called
“maximally non-Abelian” contributions [11]. The self-
energy correction to the propagator gives

N 4
(2;8e) __ __g_ CrCa 1-‘\2(1)/2 — 1)(3D — 2)
Vet = (W) 64 (D-2P(D-D-1D""
(5)

where C4 is the Casimir operator of the adjoint repre-
sentation,

A= [2rulnn® + i) P + (—2munn” +i€)*P]  (6)

and the fermionic loop has not been considered (pure
YMT). Equation (5) exhibits a double pole at D = 2.

Next we consider the contribution of the so-called
“cross” graphs, the ones with two noninteracting crossed
vector exchanges,

wEen) _ ( g )4 CpCaT?(D/2-1)
e _ _ (L

T 16 (D —4)*4
x[A+83<1—P2F(TB5__%L)2)>], (M

where
B = [(27ru2nn* + 7:6)(—277[.14271774* + 7:6)]2—D/2_ (8)

Again a double pole occurs at D = 2.

The contribution coming from graphs with three vector
lines is by far the most complex one. It is convenient to
split it into two parts, one coming from graphs with two
vector lines attached to the same side,

~ 4
@) (§\'CrCa A [T%D/2-1)
Wit = - (E) % D-a [ D-3
— 9I'(3 — D/2)T(D/2 — 1)I(D — 3)], (9)

and another one in which the three “gluons” end in three
different rectangle sides
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~ 4 2
2ds) _ [ §\ CrCa , [T*(D/2-2)I'(4-D/2)
we - () S = o

« T(D — 3)F(D) —

Er
— (3= D/2)I(D/2 - 1)[(D - 3)] } (10)

r3((D/2-1)

The function F (D) is defined as
D/2-1

(3—D/2)(D - 4) [543 - D/2)

-$(D/2-1) = 2¢(1) - 2¢(5 - D)},  (11)

(D) being the digamma function and S(D) the conver-
gent generalized hypergeometric series,

F(D) = S(D) +

= 1 1T0(n+D-3)T(n+4-D/2)
S(D)‘g(nﬂ)zm I'(D-3) TI(4-D/2)
I'(D/2)
*T(n+D/2)’

(12)

Both contributions exhibit a double pole at D = 2. The
Laurent expansion of Eq. (10) around D = 4 reproduces
exactly the expression given in Ref. [9].

Summing Egs. (5), (7), (9), and (10) and performing
a careful Laurent expansion around D = 2, it is tedious
but straightforward to prove that double and single poles
cancel, leaving only the finite contribution

w@(D=2) = (42;)2 CrCa(n*n)? (1 + %2> . (13)

The presence of a nonvanishing CrC4 contribution is
a dramatic result: it means that the theory does not
exponentiate in an Abelian way, as a “bona fide” free
theory should do. In order to better understand this
result, it is worth turning our attention now to the same
Wilson loop calculation, performed in the light-cone axial
gauge nA = 0.

The calculation in light-cone gauge nA = 0.—The free
vector propagator in light-cone gauge is very sensitive
to the prescription used to handle the so-called “spu-
rious” singularity. The only prescription known so far
which allows one to perform a Wick’s rotation without
extra terms and to calculate loop diagrams in a consistent
way [12] is the causal Mandelstam-Leibbrandt (ML) pre-
scription [13]. In a canonical formalism it is obtained by
imposing equal time commutation relations [14]; in two
dimensions a “ghost” degree of freedom still survives, as
will be discussed in the last section.

When the ML prescription is adopted, the free vector
propagator is indeed a tempered distribution at D = 2
[15], at variance with its behavior in Feynman gauge. In
particular, when z; =0,

2r—P/21(D/2)
4-D

(zn*)?

*u *xv LC _
n-on D;.w (z) = (—a:2+’i€)D/2.

(14)
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The calculation of the Wilson loop under consideration
at O(g*) in 14+ (D~-1) dimensions, using light-cone gauge,
has been performed in Ref. [10]. Here we shall report
those results and then perform their Laurent expansion
around D = 2, the value we are interested in.

One might wonder why dimensional regularization
should be introduced at all, as one might presume that
single graph contributions are likely to be finite in this
gauge. On the other hand, while remaining strictly at
D = 2, no self-interaction should be present.

We shall discuss this point of view at the end of the
paper. For the time being let us recall that, when D # 2,
“transverse” vector components are turned on and, al-
though their contribution is expected to be O(D — 2),
it can compete with singularities arising from loop cor-
rections. This is indeed what happens in the self-energy
calculation, as will be soon apparent.

The calculation O(g?) is easily performed and the re-
sult exactly coincides with Eq. (3), for any value of D.
At O(g*) we again confine ourselves to the “maximally
non-Abelian” contributions, without losing information.
The self-energy graph now gives

~ 4
@2s¢) _ [ §) CrCa 4
Wie = (E) T { @-Dy(D-3)
I'?(3 — D/2)T(D - 3)
[ 6= D) -T*D/2 - 1)]
r2(D/2 -1) 3D -2
T @-Dp(D-3 [ TiD-1)
- 553} 09
Its limit at D = 2,
2
W) (D =2) = (Zg;) CrCa(n*n)?, (16)

is finite, but it does not vanish, as one might have naively
expected. Similarly the contribution from the “cross”
graph

~ 4
cr g\ CrCaT%(D/2-1 D-2
Wz(f"c)=—(——) rCal”(D/ ){2AD_3

T 16 (D -4)*
I'%2(3-D/2)
+ 8B [1 - 2m_] } 17)

leads to a finite, nonvanishing, result in the limit D = 2,

2\ 2 2
wEN(D=2)= (L) croa(nn)?Z.  (18)
4 3
Summing Eqs. (16) and (18) we exactly recover Eq. (13).
As a matter of fact the contribution due to graphs with
three “gluon” lines [10],
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2(3 _
W g {F(D/2 — 2’3 - D/2) + F———F(?s _%/)2)
6D — 28 2
“D-aw-9 te-pp P
~ (4= D)L - D/2)Sy(D) }, (19)
where
 20'CpCa,. wap —zn _ (7D\ (D —4)
0= =gnp nn')'PeTE" cos (T) (D-42
(20)

S1(D) = Z_F(_"+_2_.D_/2)_ [¢(n+p/2)

‘= (n+3—D/2)n!
2
~ Y3 =D/t e B T T D)
T(n + D/2 — )I(5 - D) 1
B (4 +n— D/2) n+3—D/2]’
(21)
and
5:0) = 3 2B [roj2 -
§ ( [(n+5-D)  T(n+2) )
T(h+3-D/2) T(ntD/2)
2I‘(n+ NI(D/2) T(n+5-D)
T(n+1+D/2) T Tn+4d—DJ2)
x T(D/2 1) - F(;(: _131;(3 ;g{”] . (22)

vanishes when D = 2.

As a consequence the same finite result for the Wilson
loop O(g%) at D = 2 is obtained both in Feynman and
in light-cone gauges. However, non-Abelian terms are
definitely present; the theory cannot be considered a free
one in quantum loop calculations at D = 2, in spite of
the quadratic nature of its classical Lagrangian density in
light-cone gauge. From a practical viewpoint, in this fully
interacting theory, the hope of getting solutions, when
quarks are included, e.g., for the mesonic spectrum, in
analogy with ’t Hooft’s treatment, seems to us remote.

The ’t Hooft approach.—In this section we stick to 1+1
dimensions. If we interpret z~ as time direction, the
field A_ is not an independent dynamical variable and
just provides a nonlocal force of Coulomb type between
fermions. In momentum space it can be described by the
“exchange” k;2 [4]. Owing to its singular IR behavior,
this expression is not a tempered distribution; however,
it can be Fourier transformed after an analytical regular-
ization,

D__(z) = # / ke @2k, |2 (23)

A=1
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Alternatively the same result can be obtained by in-
terpreting the square as (minus) the derivative of the
Cauchy principal value (CPV) distribution

D__(z) = —ZQ;—)z /eikzdzka_i; [CPV <i)]

—=le-16(z4). (24)

It is straightforward to check that, by inserting Eq. (24)
in our Wilson loop, the result (3) at O(g?) is recovered.

At O(g*) in 1+1 dimensions, the only a priori sur-
viving non-Abelian contribution, which is due to “cross”
graphs, vanishes using Eq. (24). Henceforth no CrC4
term appears, in agreement with Abelian exponentiation,
but at variance with the result obtained (after regular-
ization) in Feynman gauge. On the other hand, no fully
consistent vector loop calculation would be feasible in
1+ (D — 1) dimensions, using a CPV prescription or in-
troducing IR cutoffs [16].

If we perform instead an equal time canonical quanti-
zation, starting from the Lagrangian density

L=31F¢_F}_+X\*nA°, (25)

A% being Lagrange multipliers, by imposing the equal
time commutation relations,

[A$(t,z), Fgu(t,y)] = i6(z — )8, (26)

we recover for the vector propagator exactly the ML pre-
scription restricted at D = 2.

In this context the equation for the Lagrange multipli-
ers

nOA® = 0 (27)

is to be interpreted as a true equation of motion and
the fields A provide propagating degrees of freedom, al-
though of a “ghost” type [14]. The potentials A% have
the momentum decomposition

A2 (k) = u®8' (ky) +v*6(k), (28)
2@ (k) being proportional to u®: X\* = k_u®.
The canonical algebra (26) induces on u* and v® the
algebra
[vE(k-), ub(g-)] = £6(k- — g-)6%, (29)

v$ and ug being defined as

3144

v(k-) = 6(k-)vi (k=) + O(—k-)vg(—k-),

ut(k_) = (k- )ul (k=) — 6(—k_)u® (—k_).

all others commutators vanishing. This algebra eventu-
ally produces the propagator (14) for D = 2. No wonder
then that we recover from the “cross” graphs Eq. (18),
whereas, in strictly 1+1 dimensions, neither self-energy
corrections nor graphs with three vector lines should be
considered.

The result we obtain in this third scenario neither co-
incides with the one in Feynman gauge (the limit D — 2
being “discontinuous”), as there is no self-energy con-
tribution in strictly 1+1 dimensions, nor obeys Abelian
exponentiation as in 't Hooft’s approach, the reason be-
ing rooted in a different content of the degrees of free-
dom (the fields A%). Although perhaps more satisfactory
from a mathematical viewpoint [7], it looks in our opin-
ion less coherent and its “physical” interpretation looks
somewhat obscure.
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