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Inflation can occur in the cores of topological defects, where the scalar field is forced to stay near the
maximum of its potential. This topological inflation does not require fine tuning of the initial conditions.
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Inflation is a state of very rapid cosmological expansion
driven by the potential energy of a scalar field ¢ (called
the “inflaton™). The inflationary scenario was originally
proposed [1] as an explanation for some very unnatural
features of the initial state that was required in the stan-
dard cosmological model. Subsequent analysis has
shown, however, that inflation itself requires a certain
amount of fine tuning of the initial conditions [2-4]. In
models of “new inflation” [5,6] the Universe has to have
a region, a few horizons across, where the field ¢ is rela-
tively smooth and its average value is very close to a local
maximum of the potential ¥ (¢). In a *“‘chaotic” inflation
scenario [3], a similar region should have a value of ¢
greater than (few)xmp, where mp is the Planck mass.
Since the latter condition is less restrictive, chaotic
inflation appears to be more generic than new inflation
[4]. The purpose of this Letter is to make a simple obser-
vation that there exists a wide class of models where the
field ¢ is forced to stay near the maximum of V() for to-
pological reasons, and thus inflation of the “new” type
can occur without fine tuning of the initial state.

I begin with a simple model where ¢ is a one-
component scalar field with a double-well potential, such
as

V(p)=5r(p2—1n?)2. 1)

Let us suppose, for the sake of argument, that the
Universe emerged from the quantum era in some kind of
a random state and that the field ¢(x) is initially given by
some stochastic function with a dispersion (¢%) > n% As
the Universe expands, the spatial variation of ¢ will tend
to be smoothed out and the magnitude of ¢ will tend to
“roll” towards one of the minima of the potential at
¢=11n. Hence, one could expect that after a while the
Universe will split into domains with ¢ =+n and ¢=—n,
while all the variation between these two values will be
confined into the walls separating the domains [2].

This is indeed what would happen in cases when the
scalar field model (1) has domain wall solutions of
sufficiently small thickness. The wall thickness in flat
spacetime, &g, is determined by the balance of the gra-
dient and potential energy, (n/80)*~Vo, where Vo
=V (0). This gives

So~nVg 2 @)
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and for the model (1), S~ ~"2n~'. Now, the horizon
size corresponding to the vacuum energy ¥V in the interi-
or of the wall is

1/2
3

SxVs (3)

Ho '=mp

where mp is the Planck mass.

If << Hg ', then gravity does not substantially affect
the wall structure in the transverse direction [7]. In par-
ticular, the wall thickness is not much different from its
flat-space value 8o. However, for 8> Hg ! the size of
the false vacuum region inside the wall is greater than
Hg ' in all three directions, and it is natural to assume
that this region will undergo inflationary expansion.

The condition 8o> H¢ ', combined with Egs. (2) and
(3), implies

n>mp. 4)

We expect, therefore, that with gravity taken into ac-
count, models like (1) with a symmetry breaking scale
n > mp have no domain wall solutions of fixed thickness.
Instead, the walls will be smeared by the expansion of the
Universe, and the false vacuum regions inside the walls
will serve as sites of inflation. With a random initial field
distribution, the formation of such inflating regions ap-
pears to be inevitable.

Condition (4) does not represent a significant con-
straint on the parameters of the model. In fact, the same
condition is necessary for a slow-rollover inflation to
occur (regardless of initial conditions). To a good accu-
racy, the slow rollover of the field ¢(x,7) is described by
the equation

3He=—V'(p), ()
where
H*=(a/a)?=8xGV(e)/3, 6)

G =mjp % is Newton’s constant, and the metric is given by
ds?=dt*—a*(x,t)dx?. @)
The slow-rollover regime assumes the conditions
le] <3H|pl, P2<2V(e),

which with the aid of (5) and (6) can be expressed [8] as
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requirements for the potential V' (¢),
VV)'<122GVV, V'?<482GV2. (8)

With V() from Eq. (1), the first of these requirements
implies 6xn%/mp>1, and thus Eq. (4) does not impose
any additional constraints. More generally, for values of
¥ not too close to ¢ =0 and ¢= % 1, one expects that
V'/VI~n~", [V"/V|~n~2 which again leads to Eq.
(4).

Cosmic strings and monopoles can also serve as sites of
topological inflation. For example, the potential

V(‘P)=-lt—)»(90a‘toa_n2)2, 9)

with a=1,...,N gives rise to global strings for N =2
and to global monopoles for V=3 [9]. The correspond-
ing flat-space solutions have core radii 60~nV0_'/2 (|eal
is substantially smaller than n within the core). As for
domain walls, the condition 8o> Hg ' requires that
n>mp. The same mechanism could in principle work
for gauge-symmetry defects. However, if ¢ had a gauge
charge g~0.1, the radiative corrections to the self-
coupling A would be ~g* and very small values of
AS107'2 needed to explain the isotropy of the mi-
crowave background would require unnatural fine tuning.

The conjecture that static defect solutions in model (9)
do not exist for n> mp is known to be true in the case of
strings [9]. The gravitational field of a gauge U(1) string
is described by an asymptotically conical metric. For
n<mp the conical deficit angle is given by A= 8xGy,
where u~n? is the mass per unit length of string. As the
deficit angle increases and becomes greater than 2, the
space develops a singularity [10]. The corresponding crit-
ical value of n is n.~mp and has a weak dependence on
the relative magnitude of scalar and gauge couplings,
A/g2 The case of a global string, g=0, is somewhat
different in that its spacetime is always singular [11].
For n<mp the singularity is at a very large distance
from the string core and is, therefore, unrelated to our
discussion. But for nX mp the singularity encroaches
upon the core and its nature is similar to that for a super-
massive gauge string [10].

In the case of monopoles, the mass of the core can be
estimated as m ~ V83, and the ratio of the core size to
the Schwarzschild radius is 8o/2Gm ~mp3/n®. For n
> mp the core is inside its Schwarzschild sphere, and one
expects the solution to be singular. This expectation is
confirmed by detailed analysis, as well as by numerical
calculations [12]. For a global monopole, the solid deficit
angle is [13] A~872Gn% This exceeds 4x for n= mp,
suggesting again that nonsingular static solutions do not
exist in this regime.

A related problem of the existence of static defect solu-
tions in de Sitter space has been studied in Ref. [14],
disregarding the gravitational backreaction of the defects
on the background spacetime. There, it is shown that
domain walls, strings, and monopoles in models (1) and
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(9) can exist as coherent objects only if So=A """

< H ~'/2, where H ™' is the de Sitter horizon. As the
flat space core size &g approaches its critical value
8.=QH) ™!, the size in de Sitter space diverges as
8 (8o—58.) "2 For 8> &, the defects are smeared
by the expansion of the Universe.

Global symmetries that give rise to inflating walls,
strings, or monopoles do not have to be exact. An ap-
proximate discrete symmetry would result in the forma-
tion of regions of unequal vacuum energy separated by
domain walls. Strings resulting from an approximate
symmetry breaking get attached to domain walls, and
monopoles get attached to strings. In models with
80 < Hq !, this can drastically alter the cosmological evo-
lution of these defects [8]l. However, for o> H !
inflation starts as soon as the defects are formed, and the
approximate nature of the symmetry is unimportant.

For topological inflation to begin, one does not have to
assume that the energy density, the expansion rate, or the
scalar field distribution is homogeneous on the scale of
the defect core or of the initial horizon. In this respect
the conditions for topological inflation are less restrictive
than those for new or chaotic inflation. All one needs is
that the expansion rate is sufficiently high to avoid recol-
lapse before the Universe reaches densities p < V. This
condition does not represent a fine tuning: The expansion
rate can be arbitrarily high. One does have to require the
Universe to expand (rather than contract) on the comov-
ing scale of the defect core. Whether or not this require-
ment is unnatural depends on one’s ideas about the initial
state.

Once started, topological inflation never ends. Al-
though the field ¢ is driven away from the maximum of
the potential, the inflating core of the defect cannot
disappear for topological reasons. In fact, it can be
shown that the core thickness grows exponentially with
time. Taking the double-well model (1) as an example,
let us consider a small region of space around the surface
#(x,19) =0, where ¢ changes sign, at some ¢t =1¢ (after
the onset of inflation). We can choose the coordinates so
that the surface ¢(x,t9) =0 lies locally in the xy plane.
Then we can expand the function ¢(x,z¢) in powers of z
and the potential (1) in powers of ¢,

eo(x,19) = kz, (10)
V(e) = Vo— 5 u%e?, (1)
where u2=An? and Vo=An*/4. The following evolution

of the field ¢ and of the metric is determined by Egs. (5)
and (6):

2
e(x,1) = ¢(x,19) exp —L(t—to) , (12)
3Hy
a(t)zexp[Ho(t—to)] s (13)
where I have set a =1 at 1t =19. We see from Eq. (12)
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that |¢| exponentially grows with time. When it becomes
comparable to 5, the approximation (11) breaks down
and Egs. (12) and (13) no longer apply.

The range of validity of Egs. (12) and (13) can be
specified as |¢(x,1)| < ¢x, where ¢y is comfortably small-
er than 1, say, ¢x=0.17. From (10) and (12), the
boundary of this range is

2

3Hy

z=k "oy exp (r—19)|. (14)

The corresponding physical distance is given by

2
t (15)

4

d=a(t)z x Ho— £
a(t)z exp[[ " 3H,

and is an exponentially growing function of time.

It is well known that new and chaotic inflation can also
be eternal [15]. This is due to quantum fluctuations of
the field ¢, which can cause it to stay at large values of
V(¢) instead of rolling down towards the minimum. A
remarkable feature of topological inflation is that it is
eternal even at the classical level. As in the new in-
flationary scenario, quantum fluctuations will dominate
the scalar field dynamics at sufficiently small values of ¢
(< H3/An?). This will cause the formation of a multi-
tude of thermalized regions inside the inflating domain.
As a result, the geometry of this domain will be that of a
self-similar fractal. The corresponding fractal dimension
can be calculated using the technique of Ref. [16].

Although fluctuation-driven eternal inflation is quite
generic, it is not universal. One can easily construct po-
tentials with a wide slow-rollover region satisfying the
conditions (8), but with curvature too high to allow quan-
tum fluctuations to dominate either at small or at large ¢.
In such models, only topological inflation can be eternal.

What do inflating defects look like from the outside?
One could expect that in a model like (1), inflating walls
would appear at the boundaries of thermalized regions
with ¢=+n and ¢ = —1n. One could also expect that an
observer may be able to get into the false vacuum region
if she moves towards the boundary sufficiently fast. How-
ever, it can be shown [17] that the boundaries of thermal-
ized regions are spacelike hypersurfaces. This appears to
be a general feature of slow-rollover inflationary models.
In our example, it is easily seen from Eq. (14) that
la(t)dz/dt|— oo as t— oo, indicating that the surface
#=¢x (which can be thought of as defining the boundary
of the defect “‘core™) is asymptotically spacelike. Hence,
the wall will appear to a “thermalized™ observer not as a
boundary that can be crossed, but as a spacelike hyper-
surface in her past.

Let us now consider the same question for an external
observer in a region that never inflated. To make the
question more specific, suppose that the initial expansion
rate of the Universe is high, so that the geometry of
spacetime outside the defects is rapidly approaching a lo-
cally flat regime. We want to know what inflating defects

will look like to an observer in a flat region. In the case
of gauge (magnetic) monopoles, a plausible answer is
that, when viewed from the outside, an inflating monopole
has the appearance of a magnetically charged black hole.
Solutions of Einstein’s equations describing inflating
universes contained in black hole interiors have been dis-
cussed in Ref. [18]. The situation with global strings is
more puzzling. For example, in the case of strings with
n> mp, the static solutions of Einstein’s equations con-
tain naked singularities, and the formation of such singu-
larities from a nonsingular initial configuration would
contradict the cosmic censorship hypothesis [19]. Thus,
the evolution of the exterior region of superheavy defects
remains an interesting problem for future research.

It is perhaps worth emphasizing that the existence of
inflating topological defect solutions is, by itself, neither
new nor surprising. For example, it is clear that inflating
regions in model (1) can contain surfaces of ¢ =0, which
are the midsections of inflating domain walls [20]. It was
thought, however, that the model can give rise either to
inflation or to fixed-thickness domain walls, depending on
the initial conditions. The main contribution of the
present paper is to point out a class of models where stat-
ic defect solutions do not exist and where inflation is
forced on us by topology for a very generic initial state.

Although plausible, the topological inflation scenario
outlined in this paper requires further justification. In
particular, it would be interesting to test it by numerical
simulations with various initial conditions. Numerical
simulations of the onset of inflations have been performed
by a number of authors [21]. However, most of this work
focused on the question of whether or not cosmological
expansion had enough time to smooth out the inhomo-
geneities of the scalar field before the domain structure
would develop. It is possible that some of these simula-
tions were terminated exactly when topological inflation
was about to begin.
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