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Stochastic Resonance in the Perceptual Interpretation of Ambiguous Figures:
A Neural Network Model
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We describe the results of computer simulations of the dynamical behavior of an autoassociative net-
work with a two-dimensional energy landscape. Such a network can model some aspects of the
phenomenon of perceptual bistability in the presence of ambiguous figures. The network can be operat-
ed at either zero or nonzero temperatures which represent an internal system noise. Our results show
that, under the inAuence of a weak periodic external signal, the network exhibits a maximum in the
signal-to-noise ratio at an optimum noise level: the characteristic signature of stochastic resonance.

PACS numbers: 87. 10.+e, 05.40.+j

Studies of the perception of ambiguous figures have a

long history [1,2]. Perception of these kinds of figures

(e.g. , the Necker cube [2]; see Fig. 1) is characterized by

noisy bistable dynamics, that is, the two different inter-

pretations, elicited by the figure, are alternatively per-

ceived by the observer with a stochastic time course.
N umerous experiments have shown that the times be-

tween such reversals are approximately gamma distribut-

ed [3]. Such distributions are common in biology and

can be interpreted in terms of the noise driven motion of
a state point which randomly crosses a threshold or sur-

mounts an energy barrier. Recently, there has been a re-

vival of interest in these results in connection with the de-

velopment of dynamical models of brain function during

such reversals in perception [4]. There has also been a

growing interest in stochastic resonance (SR) associated
with noisy nonlinear systems [5]. This is a dynamical be-

havior wherein noise may enhance the transmission of in-

formation through certain systems, such that a defined

signal-to-noise ratio (SNR) achieves a maximum for an

optimum value of the noise intensity. SR has been

demonstrated in numerous physical experiments [5,6]
and, more recently, in a simple sensory neuron [7]. The

I IG. 1. Necker cube with its two alternative interpretations.

theory of SR was first advanced as a possible explanation
of the observed periodic recurrences of the Earth's Ice
Ages [8], and, stimulated by an interesting experiment
with a bistable ring laser [9], has been the object of
numerous recent theoretical studies [10]. The possible
importance of SR for the processing of information in

neural systems seems evident at all levels from the lower

physiologieaf levels to the higher eognkil. e ones. Indeed,
it has long been recognized that noise can improve the
performance of certain neural networks [11],and it may

be possible that an optimum noise level can achieve the
maximum improvement.

In this Letter, we consider a noisy autoassociative neur-

al network which has previously been shown to be an ac-
curate model of the bistable perceptual process involved

in the interpretation of ambiguous figures [12]. Our re-

sults indicate that SR, as well as other recently studied
f'eatures of noisy bistable dynamics, can easily be demon-

strated in this system.
Our network is made up of binary neurons (activation

levels 0 and 1) which are globally, or all to all, connected
[13]. The connection matrix is symmetric with zero diag-

onal elements, that is, without individual element auto-

connections. The network is split into two groups of neu-

rons numbering n~ and nq, respectively. Each of these

groups is associated to a single perceptive state, A and B,
respectively, representing the two possible interpretations
of the figure. In experiments, the two perceptive interpre-
tations are mutually exclusive, and, in order to reproduce
this feature, the excitation of the n~ group must inhibit

the n~ group and vice versa. %'e have thus designed a

connection matrix, W, to be obtained through learning

the two competitive interpretations by using a Hebbian

rule, which is made up of four parts: two square blocks

representing the positive (excitatory) connections within

ng and nz, respectively, and two rectangular blocks rep-

resenting the negative (inhibitory) interconnections link-

ing the two groups. For simplicity, the connections

among neurons within each group are taken to be of
equal strength ni (n) within the group A (8), whereas the
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interconnections between the two groups are taken to be

negative of strength —r. The network described above is

a particular case of the general Hopfield one [14], for
which an energy function, with its classical expression,
can be introduced,

N N

E = ——Q g S;W(JS~,
2i 1j 1

where S; is the activation of the ith neuron, and WJ- is an

element of the synaptic connection matrix. The detailed

value of E will depend on the network configuration. The
particular form of our connection matrix W allows us to
simplify this energy function by evaluating the double

sum, whence all network configurations with the same
number of active neurons in each population have the
same energy value. This value is given by

E = —
2 a(a —1)m —

2 b(b —1)n+abr

in a configuration of the network with a active neurons in

the population n~ and b active neurons in the population

na Th. erefore the energy level of the network is deter-
mined by only two independent variables, a and b, with

finite integer values, and, obviously, by the three parame-
ters m, n, and r of the connection matrix.

An example of the energy function is shown in Fig. 2
for the parameter values m=n 0.02, r=0.04. It has
two minima located at the vertices (ng, 0) and (O, na).
These two minima correspond to the two stored con-
figurations in which one population is fully activated and
the other fully inhibited. Constraints must be imposed on

the connection matrix such that the energy will have only

10

these two configurations as minima. In fact, as shown in

[12],one can easily derive from Eq. (2) that only the ver-

tices of the bidimensional domain can be minima of the

energy function. Whereas the vertex (0,0) is always

isoenergetic with its nearest neighbors, the vertex (n~, ntt)
is not a (local) minimum if the condition r ~ min[(n~
—1)m/ng, (na —1)n/n~] is satisfied.

We assume that the network evolves according to a
modified Hopfield dynamical rule, that is, the fixed point
dynamics of the original Hopfield model (which can be
interpreted as the transition of a system from an excited
state to its fundamental state at the temperature T=O
K) is replaced by a dynamics generated by thermal noise.
The network state is asynchronously updated at each time

step by changing the activation level (0 1 or 1 0) of
one, randomly chosen neuron. After each update, a new

value of the energy function is calculated, and the corre-
sponding state is either accepted or rejected according to
the following. (a) The Hopfield rule (T=0): accept only
if d, E ~ 0, otherwise reject; and (b) the modified Hopfield
rule (T)0), using the Metropolis algorithm [15]:accept
with probability one if hE ~ 0, accept with probability

p =exp( hE/kqT—) if hE )0. In this way the effects of
nonzero temperature, or noise, are accounted for by the
simulation. For T=0, basins of attraction are defined by
the jagged lines in the a-b plane. Any trajectory begun
on the grid to the lower left (upper right) of the lines will

with probability 1 arrive at the vertex b 0 (a =0). Tra-
jectories beginning on grid locations between the lines

may terminate on either vertex.
An external periodic signal can be introduced in the

form of a small additive perturbation to the energy,

N N

E = —g g S;WJS&+Hpsin(rapt) g S;—g S;
2i 1j 1 ,i'd iGB

(3)

20

FIG. 2. The energy landscape for the parameter values
m n 0.02 and r 0.04. Alternate perceptual interpretations
of an ambiguous figure are indicated by trajectories lying in the
basins of attraction of the points (a 0, b 20) and (a 20,
b 0). The basins at T 0, discussed in the text, are bounded
by the dark lines lying in the a-b plane.

where in the second term Hp and rap are the amplitude
and frequency of the signal, and the summations extend
over all neutrons in the populations n~ and nest Adopt. ing
the analogy between Hopfield networks and spin systems,
the external signal corresponds to an oscillating weak
magnetic field oriented in two opposite directions on the
two populations. During alternate half cycles, the field

favors the activation of one population and the inhibition
of the other. Trajectories generated during one half cycle
then preferentially migrate toward one of the vertices and
toward the other vertex on the alternate half cycles. Thus
the probability to realize one of the interpretations is

periodically modulated. The time series of a trajectory
for T & 0 is thus represented by a series of switching
events between the attractors. These events occur at
more-or-less random times but with some degree of
coherence with the signal. For moderate values of the
temperature, the signal frequency was small compared to
the mean rate of switching between attractors (and al-

ways very small compared to the rate at which the net-
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FIG. 3. Power spectra of' the time series
representing sequential perceptive interpre-
tations for three temperatures: dashed, T
=0.65; dotted, T =1.20; and solid, T 2.90
(scaled for ka —= 1).
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work was updated). This corresponds to the adiabatic
approximation adopted in nearly all SR theories [10].

The power spectrum of the time series was computed
and averaged with representative results shown in Fig. 3.
The details of these spectra are very similar to those pre-
viously observed for SR systems, that is, they are charac-
terized by a broad band, Lorentzian noise background,
with signal features in the form of sharp peaks at the sig-
nal frequency and its odd harmonics. Three spectra, tak-
en at small, intermediate, and large noise intensities, are
shown. It is clear that the largest signal features, at both
the fundamental and the third harmonic, are evident at
the intermediate noise level. Moreover, a dip or "hole" is

evident at the first two even harmonics. These holes,
which appear only for low noise intensities, have been ob-
served previously [16],were at first unexplained, but have

now been accounted for in a recent and elegant theory
[17].

SR can be observed by comparing the signal strength,
S (the area under the fundamental peak), to the noise
level at the fundamental frequency, N(run). The SNR is

thus calculated from the usual formula,

SN R = 10 logio[S/N (ruo) ]

in dB. The results for three different signal frequencies
are shown in Fig. 4. %'e note that for higher frequencies
the maximum moves toward larger values of T (higher
noise levels) and its amplitude is decreased. Both the

shape of the SNR versus T curves and this behavior of
the maximum are characteristic of SR as demonstrated

by the theory [10].
We conclude with the observation that, while it has

been accepted for some time that noise must play some

role in perceptive processes, the nature of that role, and

indeed whether the noise is useful or not, remains quite
obscure. Our demonstration of SR in a realistic percep-
tual model, albeit of a very simple process, is suggestive
of usefulness and expands the range of application into

the area of brain function.
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FIG. 4. The SNR versus T for three frequencies: diamonds,

f 0.0009; plus signs, f 0.0023; and squares, f=0.01. The
characteristic signature of SR, a maximum SNR at an op-
timum temperature (noise level), is evident.
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