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Heat-Flow Induced Anomalies in Superfluid He near Ti,
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We study the eAect of a stationary heat current Q on superAuid He in a homogeneous metasiable
state near Tq(Q). On the basis of a renormalization-group calculation we predict a sizable enhancement
of the specifie heat Ce(Q) and a weak depression of the superfluid density p, (Q) up io a critical heat
current Q, (T) where Cp and p, exhibit cusplike anomalies.
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Instabilities of macroscopic systems under stationary
nonequilibrium conditions constitute a fundamental area
of' research in condensed matter physics. Unlike critical
phenomena in thermal equilibrium such instabilities often
exhibit mean-field type characteristics since fluctuation
effects tend to be suppressed by the externally driven flow

through the system. Here we shall address ourselves to
an interesting instability ~here fluctuations remain im-

portant although the system is not in thermal equilibri-
um: the superfluid transition of He in the presence of a
finite heat current Q. This transition occurs at a de-

pressed transition temperature

T,(Q) = T„(o)[1 —(Q/Qo) "],
where x is an exponent of a non-mean-field type. The
measured value [ll is x =0.813+ 0.012; it diff'ers some-
what from the prediction [2,3] x=[(d —l)v] '=0.744
in d=3 dimensions, with v=0.672 being the correlation-
length exponent [4].

While He above Tx(Q) is in a nonequilibrium state
with an inhomogeneous temperature profile [3,51, super-
Auid He at finite Q below Ti,(Q) can still exist in a state
with a homogeneous temperature T [6], provided that Q
is suSciently small. This is a metastable state since it

can decay via the nucleation of vortex rings [7]. Here we

shall assume the smallness of Q only in the sense that this
nucleation rate and the ensuing temperature gradient are
negligible. Then, as T approaches Tx(Q) from the homo-

geneous superfluid side, the transition at T=T (Qx) may
be interpreted [81 as an analog of the instability at the
spinodal line of a first-order transition.

It is not obvious a priori to what extent fluctuation
effects at this nonequilibrium transition are important.
The aim of this Letter is to perform a renormalization-
group (RG) analysis of this problem focused upon well

observable quantities: the specific heat and the superfluid
density. On the basis of a RG calculation without adjust-
ment of parameters we predict a novel fluctuation eAect
of sizable magnitude on the specific heat Cp(T, Q) for
T&Ti(Q) whereas the superfluid density p, (T,Q) is

found to deviate only weakly from its equilibrium value

p, (T,O). Our results imply that both quantities exhibit
cusplike anomalies at T = Tx(Q).

It is well known [6] that a heat current Q in superAuid
He creates a superAuid counterflow with normal and

superfluid velocities c„and v, according to Q=p, ST(t,
—i, ) where 5 is the entropy per unit mass. Near Tx this
relation may be approximated by Q = —Si T&p, t, or

Q = —g(ikttTxJ, , (2)

where 1, =Im&iit*Viit) is the superfluid current, kti is

Soltzmann's constant, and go=2. 16&10" sec '. Fol-
lowing [7] we describe the superAuid state at finite

superfluid velocity v, =hk/m4 by the probability distribu-
tion p[iit(x)} -exp[ —H [iit(x)]] with

H [y(x)] = a"x '
I ii I—'+ l&y—l'+uol it I',

~J

where Ti. is the transition temperature at Q =0. We are

primarily interested in the constant-pressure specific heat

per unit volume Ce whose definition [10-121 can be gen-

eralized to the case of finite k according to

Cp =Ctt ——ao &liitl')(ro, k),2 6
2 Bro

&liitl ')( O, k ) =2- 1 (ri,'ro, k )l „=„(„ i ),8
Bro

where iit(x) is the complex order-parameter field. For
finite k and ro (0 the mean-field equation BH/Bitt=0 has

the solution [9] iit r(x) =ti~texpik x with

/~i= (fp+k )/4uo.

Our basic approximation is to neglect the creation of vor-

tex configurations by performing a perturbation expan-
sion around y~t at a given k. This will lead to an order
parameter of plane-wave structure

&iit(x)) =ri(ro, k)expik x,

with g(ro, k)Ag t corresponding to a state with uniform

v, = hk/m4. The homogeneous temperature T enters via

ro ro~+ apt, t (T Ti)/Ti, ,
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1(rp, k ) = (2tr) d p [p +co —4k cos e] (io)

where e is the angle between k and p, and cp = —2(rp
+k ). The one-loop integral 1(rp, k) can be evaluated

analytically (using dimensional regularization at infinite

cutoff [13])by means of the integral representation of the

hypergeometric function F(a, b;c;z) [14]. This leads to

1(rp, k ) = —Adcp F, ;;4k /cp, (I I )I d z 2 —d I d
2 '2'2'

with a=4 —d and Ad=I (3 —d/2)[2 x (d —2)l
The resulting bare specific heat, Eq. (7), needs to be re-
normalized in order to appropriately account for the
effect of the critical fluctuations near the superfluid tran-
sition at k =0 and ro=ro, . We employ the minimal sub-
traction scheme at fixed d &4 [10,12,15]. The Z factors
remain unchanged since no new ultraviolet divergences
arise at keo; thus we have the renormalized parameters
u=p 'Z„'Z~Adup and r=Z„'(rp —rp, ). This implies
that the well-known structure of the renormalized specific
heat below T«[10,12] C=Z Ca Cp is maintained,

with the background contribution Ctt. Here f'(rt, rp, k) is

the generating functional of vertex functions (per unit

volume) [13] evaluated for the plane-wave order parame-
ter Eq. (5). The amplitude tI(rp, k) is determined by
8I /Brt =0. The perturbation expansion yields

( I i' I & (ro, k ) =
rtmr

—21(ro, k ),

specific heat becomes

C (T,«-) =B+A[(4v/a)+F (x—)](—t) (is)

F (x) =(2u*) ' —8+2tc 'arcsin[2«(l —2«) 't ],

The as yet missing link between «, T, and Q is established

via Eq. (2) where now J, is considered as a function of T
and a according to

J, (T,«) =g( —2t) ' fj(«-) . (18)

The scaling function fJ is known in one-loop order and is

shown in Fig. 4 of Ref. [8]. Inverting Eqs. (2) and (18)
yields x x(T,Q). The final result for the specific heat
as a function of T and Q,

C, [T,Q] =C,(T,x(T,Q)),
is obtained after substitution of «.(T,Q) into Eq. (15).

Similarly we can obtain the superfluid density as a

function of T and Q,

p, [T,Q] =p, (T, ic(T, Q) ), (2o)

with F (x)=F —(u*—, —2, x) and «.=k(( —2t) where

((t) =(pt " is the correlation length above T«with
(q=1.4 A. At k =0 the one-loop result [lo] F-(0)
=(2u*) ' —4 is recovered. The constants B and A can
be related to the specific heat at k =0 [4],

Cp(T, O) =B+(A /a)( t)—

C= I+y F (u, r/p, /kp), - (i 2)
from the known [8] result (at d =3),

and that the finite-k effect is completely contained in the
amplitude function F . The parameter y is determined

by [12) y =p 'Z 'Z„Agctt 'ap/4. Our result for
F—reads

F (u, r/p 2, k/p) —= (2u) ' —8/e

+4(d —2)(c/p) &(z)/e, (13)

2 —d 1 d 3 d+2e(z) =F , —;—;z + (z/d )F —,—;;z
2 '2'2' 2'2' 2

(i4)
with c = —2(r+k ) and z =4k /c . We see that a
finite superfluid velocity v, =hk/m4 causes a nontrivial
Auctuation effect on the specific heat which appears in
leading order in the one-loop term of Eq. (13) whereas
the mean-field contribution (2u) ' remains independent
of k. Application of the RG theory [10,12,13] implies
effective parameters u(l), y(l), and r(l) whose flow pa-
rameter l(t) can be related to t &0 via —2r(l) =p l
both at k =0 and k&0; hence F—enters the result for Cp
in the form F [u(l), —2,k/pl]-

We turn directly to the application of our results to
d=3 dimensions in the asymptotic region —t &10
where u(l) =u(0)—=u*=0.0362 and y(1) -l ' " with
a =2 —3 v & 0 [10,15,16]. Then the physical (bare)

p, (T, x) -const(( —2t) 'x 'fj(x). (2i)

C [T,g] —C [T,o] =(—t) 'f(g/Q, ),
p, [T,Q] =p, [T,O]f (Q/g, ),

(22)

(23)

for 0(Q ~ Q, (T). The scaling functions are shown in

Fig. 2. We note that at the mean-field level f~(Q/Q, )
would remain nonsingular for Q/Q, = I and f would van-

ish for all Q. On the basis of quantitative experience with

Both functions F (x) and fj(«) become complex for
«) x, =I/J6 and exhibit the cusplike behavior ——(«;
—«.) 't and —(x, —«.) 12, respectively, for «. & x, . These
singularities do not exist at the mean-field level.

The instability at x =«; corresponds to the critical
superfluid velocity v„(T)=(li/m4)x, g( —2t) ' and im-

plies a critical heat current Q, (T) or a transition temper-
ature T«(Q), Eq. (I), determined by «.(T,Q, ) «; or
x(Ti(Q), g) =«;, respectively. Only for T & T«(Q) or

Q & Q, (T) can the system exist in the metastable homo-

geneous state for which our theory predicts novel heat-
flow induced fluctuation effects as shown in Fig. I for
several Q. We see that the heat current causes a sizable
enhancement of Cp and a weak depression of p, up to
T«(Q) where Cp and p, exhibit cusplike singularities.
These effects can be represented in the scaling forms,
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I. IG. 2. RG predictions of the scaling functions of the
specific heat (a), Eq. (22), and of the superfluid density (b), Eq.
(23), vs Q/Q, (T)

FIG. 1. RG predictions (solid lines) of the specific heat
Cp[T, Q] (a), Eqs. (15) and (19), and of the superIIuid fraction
ps[T, Q]/p (b), Eqs. (20) and (21), vs reduced temperature —t

for various Q. The dashed lines corresponding to Q=0 repre-
sent (a) Eq. (17) and (b) p, / =pI(to—t)r taken from Ref. [4].
The solid lines terminate at T~(Q) with finite values and infinite
slopes.

field theory at k =0 [16,17] we expect that our one-loop
approximation for the scaling functions f and f~ is

reasonably good. %e cannot exclude, however, the possi-
bility that the type of singularity at Q, is modified at
higher order.

It would be interesting to test the predicted scaling
functions experimentally. Corresponding measurements
are planned for future research [I8]. It remains to be
seen whether T=Ti(g) can be approached sufficiently
closely, i.e., whether the experiments at finite Q can be
performed such that the inAuence of vortex nucleation is

negligible [19]. This may be realizable in some tempera-
ture range below Ti(Q) where the predicted enhance-
ment of the specific heat is already observable. Experi-
ments under microgravity conditions may be advanta-
geous in that they could explore the small-Q regime
where vortex generation is expected to be less important.

It should be noted that, in addition to the static quanti-
ties Cp and p„ there are also transport properties that ex-

hibit interesting finite-Q eff'ects near Ti(Q): the non-

linear boundary (Kapitza) resistance Rtt(T, Q) [20-22]
and the anisotropic propagation of second sound [23,24].
As far as the latter is concerned, an instability is predict-
ed [24] to occur at Ti (Q) or Q, (T) where the velocity cq
and the damping Dq vanish for waves propagating paral-
lel to Q. As far as Rx is concerned, no theoretical ex-
planation for the observed crossover temperature T„(Q)
[20] between a "linear" and a "nonlinear" region is as yet
available. A diff'erent nonlinear-Q effect, however, has

been predicted [22] in the form of a divergence ol'

Rtt(T, Q) at some T*(g) comparable to but slightly
smaller than Ti,(Q). It remains to be seen whether in fu-

ture experiments on the Q dependence of Cp and p, (in a
cell of finite thickness) the possible disturbance caused by
the boundary resistance can be made negligibly small.
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