
VOLUME 72, NUMBER 19 PH YSICAL REVIEW LETTERS 9 MAY 1994

Color, Spin, and Flavor Diffusion in Quark-Gluon Plasmas
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In weakly interacting quark-gluon plasmas diffusion of color is found to be much slower than the
diffusion of spin and flavor because color is easily exchanged by the gluons in the very singular forward
scattering processes. If the infrared divergence is cut off by a magnetic mass, m z a,T, the color
diffusion is D„i„~[a, 1n(1/n, )T], a factor n, smaller than spin and flavor diffusion. A similar
effect is expected in electroweak plasmas above M~ due to R'+ exchanges. The color conductivity
in quark-gluon plasmas and the electrical conductivity in electroweak plasmas are correspondingly
small in relativistic heavy ion collisions and the very early Universe.

PACS numbers: 25.75.+r, 12.38.Bx, 12.38.Mh

Transport of color degrees of freedom in a quark-gluon
plasma has recently been found to be infrared sensitive [1]
and thus differs from other transport processes as viscous
and thermal flow and stopping and electrical conduction

[2, 3], as well as energy degradation [4). Color does not
flow easily due to the transfer of color in the exchange of
a colored gluon in the very singular forward collisions. As
will be discussed here, this suppression of the color flow

also applies to the color difFusion and color conductiv-
ity, which are infrared sensitive like the quark and gluon
quasiparticle relaxation rates [5, 6].

Earlier studies of transport processes in relativistic
quark-gluon and electron-photon plasmas found that the
effect of Landau damping effectively led to screening of
transverse interactions and gave the characteristic relax-
ation rates in transport processes. Transport coefficients
for weakly interacting electron-photon and quark-gluon
plasmas for both thermal plasmas [2—4) as well as de-
generate ones [7] were calculated to leading logarithmic
order. Generally the transport relaxation rates have the

l
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following dependence on interaction strength:

1/r«a, ln(1/a, ,)T . (1)

However, the quark and gluon quasiparticle damping
rates, 1/~~, were not sufficiently screened by Landau
damping for nonvanishing quasiparticle momentum, p,
and depend on an infrared cutoff, m~, s cs,T, so that
[5 6]

I/r„= 3n, ln(1/o. ,)T, (2)

to leading logarithmic order. Since the quasiparticle de-

cay rates are not measurable transport coefficients the
infrared sensitivity was not considered a serious problem
However, it was recently discovered [1] that diffusion of
color in some abstract color space suffered from the same
infrared divergence which led to the same color relaxation
rates as the quasiparticle damping rates.

VVe vrill describe the turbo kinds of transport processes
by calculating the flavor, spin, and color diffusion coef-
ficient in a quark-gluon plasma within the Boltzmann
kinetic equation

1 + ns)(1 + n4) nsn4(1 + ni)(1 + nz))IM»-s41'

vi+v~, us+p ( i + & s 4). (3)

Here p, and e, are the quasiparticle momentum and en-
ergy, respectively, n;(p, ) the quasiparticle distribution
function, and F the force on a quasiparticle. The right-
hand side (r.h.s.) is the collision integral for scattering
particles from initial states 1 and 2 to final states 3 and
4, respectively, with matrix element squared lMi2~34l
summed over final states and averaged over initial states.
The (1 + n, ) factors correspond physically to the Pauli
blocking of final states, in the case of fermions, and to
(induced or) stimulated emission, in the case of bosons.
v2 is the statistical factor, 16 for gluons and 12Nf for
quarks and antiquarks. For scattering of quarks of dif-
ferent Qavor

IMi~ s41 = 99
(qq'} 2 4 4 Q +8 1

(4)168 $626384
quark-gluon and gluon-gluon interactions are just 9/4
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and (9/4)z times stronger, respectively, near forward
scattering. In a medium this singularity is screened as
given by the Dyson equation in which a gluon self-energy
IIL„T is added to the propagator

t- ~~ —q —IILT
—1 2 2

(we refer to [8] for details on separating longitudinal and
transverse parts of the interaction), where the longitudi-
nal and transverse parts of the self-energy in @ED and
@CD are for ur, q « T given by
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where x = cu/qv„and vP = e for the relativistic plas-
mas considered here. The Debye screening wave num-
ber in thermal QCD is q&

——g (2N + Nf)T /6 where
N = 3 is the number of colors, Nf the number of quark
flavors, T the plasma temperature, and p~ the quark
chemical potential. The many similarities in QCD and
QED plasmas are described in [9]. In the static limit,
IIL, (~ = O, q) = q~, and the longitudinal interactions
are Debye screened. In contrast, IIT (u = 0, q) = 0 and
so the magnetic interactions are unscreened in the static
limit. It has therefore been suggested that the trans-
verse interactions are cut off below the "magnetic mass, "
m~, z ~ g~T, where infrared divergences appear in the
plasma [10]. However, as was shown in [2, 3], dynamical
screening due to Landau damping efFectively screens the
transverse interactions off in most transport problems at
a length scale of order the Debye screening length 1/gT
as in Debye screening. Nevertheless, there are three im-
portant length scales in the quark-gluon plasma. For a
hot plasma they are, in increasing size, the interparticle
spacing 1/T, the Debye screening length ~ 1/gT, and
the scale 1/m~, s 1/g2T where QCD effects come into
play.

Let us first consider a quark-gluon plasma where the
particle flavors have been separated spatially; i.e. , the
flavor chemical potential depends on position, p, (r). In
a steady state scenario the quark flavors will then be
flowing with flow velocity, u, . For simplicity we take the
standard ansatz for the distribution functions (see, e.g. ,

[7»]):

n, (p)= exp~
P ' '

~

+1

o Bnp
u~ p.

P7E'p
(8)

The expansion is valid near equilibrium where p, , and
therefore also u, are small. It gives two terms, the
equilibrium distribution function n, = ( exp{[sP—
p, (r)]/T) 6 1) and the deviation from that. In gen-
eral the deviation f'rom equilibrium has to be found self-
consistently by solving the Boltzmann equation. How-

ever, as in the ease of the viscosity [2], we expect the
ansatz (8) to be good within a few percent to leading
logarithmic order.

The flavor diffusion coefBcient, Dg~ „defined by

(9)

is given in terms of the flavor current j, and the gradient
of the number density p; = Q no(p) = v;T33((3)/4x
of a particular flavor i. From (8) we find

Jl = Vpnl(P) = UgPg .
P

(10)

The density gradient, 7'p, = —Vp, , Q„(Bno/Bc„), can be
found by solving the Boltzmann equation. I inearizing in

3014

pi%pi = —ui —v2 ) n, n2(1 —ns)(l + n4)
QiPl iP2

34I'q'~(si + s2 ss s4) (12)

where we have ud the antisymmetry of the r.h.s. by
coordinate change pi —+ ps so that pi ~ q/2. The r.h.s.
collision integral of Eq. (12) is now straightforward to
evaluate to leading logarithmic order when the screening
is properly included (see also Refs. [2, 3, 7]). We find

D„,'„= 3 2(1+ Nf/6)a, ln(l/o, ,)T, (13)

where ( is the Rieman zeta function. The term 1 arises
from quark-gluon scatterings and the Nf/6 from quark-
quark seatterings. This result is similar to the viscous,
thermal, and momentum relaxation rates because the
collision term contains the same factors of momentum
transfer: the singular q

4 factor from the matrix ele-
ment squared and the suppressing q2 factor because the
quark flavors lose little momentum in forward scatter-
ings. Including screening, q ~ (q + III, T), where
effectively IIL, T qD~, and integrating over momen-
tum transfer, d q, gives the leading logarithmic term
ln(T2/q&~) = 1n(1/a, ).

Subsequently, let us consider the case where the parti-
cle spins have been polarized spatially by some magnetic
field [ll]; i.e. , the spin chemical potential depends on
position, y, (r). With the analogous ansatz to (8) for
the distribution functions with p instead of p, , we find
the spin current jq ——uqpq of particle 1, where uq and

pi are the corresponding flow velocity and spin density.
Linearizing the Boltzmann equation we find

u, we obtain [7]

Bni 2) ~Mi2 34~BE'i
P2P3P4

x nin2(l —n3)(l + n4)

(ul ' Pl + U2 P2 U3 P3 U4 P4)

Pa+Pa P3+P4 ( i + 2 3 4) '

It is most convenient to choose the plasma center-of-mass
system (c.m.s.) where one flavor is flowing with velocity
ui and the others with velocity u2 = —ui/(Nf —1). The
number of scatterers is then v2 = 12(Nf —1). Equiv-
alently, one can conveniently include the first flavor so
that the number of scatterers is vq ——12' but u2 = O.

In steady state the gluons will not move in the c.m. s. ;
i.e., u2 = 0 for quark-gluon scattering. Since the flavor
is unchanged in the collisions u3 = ui and u4 = u2.

To leading logarithmic order the singular interaction
near forward scattering allows us to expand around g
0, where q = pi —ps = p4 —p2 is the momentum transfer
in the collision. Multiplying both sides of (11) by pi and
summing the Boltzmann equation reduces to
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VP1 ~ . vi = 2vrv2 ) nin2(1 —n3)(1 + n4)
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+IM12 341'(ui —u2) q]

(14)

where MTl and ~TT are the amplitudes for interacting
with and without spin flip, respectively. Without spin
flip the usual factor q as in flavor diffusion appears. With
spin flip, however, us = u2 and u4 = ui and the factor
(pi —p2) appears. Because of Galilei invariance both
terms are necessarily proportional to the relative flow,
(ui u2).

The transition current can be decomposed into inter-
actions via the charge and the magnetic moment by the
Gordon decomposition rule,

&i K&x+ &*)~+&&~-(&x —&')"]&*2m

where only the latter can lead to spin flip. We notice that
the spin-flip amplitude is suppressed by a factor pf —p, .
Consequently, the spin-flip amplitude is suppressed by
a factor q2 and the matrix element squared by a factor
q4. We then find that the spin-flip interactions do not
contribute to collisions to leading logarithmic order and

the collision integral is similar to that for flavor difFusion
evaluated above. The corresponding quark spin diffuse-

ness parameter, defined by ji = D—~ Vpi, is thus
~ (c}

= DfIaver .(~) (16)

Gluon spin diffusion is slower by a factor 4/9, due to
the stronger interactions, and by another factor 4/9, due
to differences between Bose and Fermi distribution func-
tions, i.e.,

Digs = (4/9) Di
Finally, let us, like for the spin diffusion, assume that

color has been polarized spatially given by a color chem-
ical potential, pc(r). The basic difference between fla-
vor and spin diffusion is that quarlrs and gluons can eas-
ily change color directions in forward scattering by color
exchanges; i.e., one does not pay the extra q penalty
factor in the amplitude as in the case of spin flip. Con-
sequently, the color-exchange interactions will dominate
the collisions since they effectively reverse the color cur-
rents. The Boltzmann equation thus gives us an anal-
ogous result to Eq. (14) replacing spin by color where
the color-exchange amplitude now dominates. The flow
velocity of the scatterers, u;, i = 1 4, depends on the
color combination of the scattering quarks, antiquarks,
and gluons. However, in c.m.s. the scatterer has vanish-
ing flow velocity, u2 ——0, on average. Likewise the final
velocities will be zero on average. Multiplying both sides
with pi and summing the Boltzmann equation reduces
to [cf. Eq. (14)]

pivpi, c = —uivrv2 ) n, n2(1 —ns)(1 6 n4) IM12~341 (pi p2) 6(si + 6'2 E3 s4)p
QiP11P2

(17)

22+3 2Tr (q~25

q12 E"') (18)

for quark scatterings with gluons. Quark-quark scatter-
ing adds a factor (1+7Nf/33) to Eq. (18). The lower
limit is now given by the infrared cutoff, A. The upper
limit on momentum transfers, T, actually comes from

where we have used the antisymmetry by interchange of
pi ~ p2. ui and pi are now the color flow velocity and
color density of particle 1. The matrix element entering
in (17) is now averaged over all color combinations.

The transverse interactions actually diverge for small
momentum and energy transfers even when integrating
over energy transfers; i.e. , dynamical screening is insuf-
ficient for obtaining a nonzero color difFusion coefficient
like for the quasiparticle decay rates in QCD and QED
plasmas (see [6]). Concentrating therefore on the lead-
ing contribution from transverse interactions at small
x = cu/q, where IIT - i(7r/4)qDx, we find to leading
order (see Ref. [6] for details)

1lvr3
pl VP 1,c — u 1&1 335

1 1x qdq Qx
q4 + (n./4) 2qD4Z2

the distribution functions in Eq. (17) but it does not en-
ter here because only q(q12 contribute to (18) to leading
order. From the color current ji = uipi = D„i„Vpi-
we find the color diffuseness parameter

227r 1+7Nf/33
3s 5~(3) 1+Nf/6

(19)

With A = m, s g2T the analogous result to Eq. (2) is
obtained:

D,„„4.9 o., ln(1/n, )T. (20)
1+7Nf/33
1+Nf 6

Comparing Eqs. (16) and (20) we see that D«i«
A8 Dfl@ ~ ~ The color-exchange mechanism amplifies the
forward collisions so the color cannot diffuse through the
quark-gluon plasma as easily as spin or fiavor.

The factor ln(1/a. ,) in D, i, has a completely differ-
ent origin from the one in Dfl, or D . In D, i, the
logarithm arises from an integral dq/q over momentum
transfers from q A g~T to q qD gT as in the
case of quark and gluon quasiparticle decay rates of Eq.
(2). In Ds~, or D and the transport rates of Eq. (1)
a similar integral occurs, but with momentum transfers
from q q~ gT to q T. because of the extra factor
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(22)
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q /T . The infrared cutoff does not enter these trans-
port rates and they are reduced by a factor q~~/T2 cr,

Other related transport coeEcients are the electrical
conductivity, o,i, in QED and the corresponding color
conductivity, ocoio„ in QCD. Applying a color-electric
field, E„ to the quark-gluon plasma generates a color
current, J,. The color conductivity o, i, = j,/—E, can
thus be found by solving the Boltzmann equation analo-
gous to the color diffusion process. [A'e find

2 2 . (Bno)
rrcoior = —g Dcolor ) .&i

~
(21)

& s. )
Here D, i, plays the role of the color relaxation time.
Equation (21) is the standard result for a plasma except
for the factor 2/3 which arises because only two-thirds
of the colors contribute to the currents for a given color
field. Inserting D„i„from (20) we obtain

o„ior Nf n,—DcoiorT 1.7Nf T/ ln(1/o;, ),CO OI'

from quark currents alone. Gluon currents are slower due
to stronger interactions and will reduce the conductivity
slightly.

These surprising results for QCD are supported by
those found by Selikhov and Gyulassy [1] who have con-
sidered the diffusion of color in color space. They use
the fiuctuation-dissipation theorem to estimate the de-
viations from equilibrium and find the same terms with
and without color exchange, which they denote the color
and momentum difFusion terms, respectively, and they
also find that the former dominates, being infrared di-
vergent. Inserting the same infrared cutoff, they find a
color diffusion coefficient in color space equal to Eq. (2),
d, = 1/xi~ ——3a, ln(1/n, )T. Note that d, is propor-
tional to the inverse of Dcoi«. With d, as a typical
relaxation time the color conductivity is estimated in [1]
in the relaxation time approximation, and their result
differs from Eq. (22) by a numerical factor only.

The color-exchange mechanism is not restricted to
QCD but has analogs in other non-Abelian gauge the-
ories. In the very early Universe when T » Miv 80
GeV, the mass of the W+ bosons can be neglected and
the electroweak interactions have the same screening
problems as QCD and QED. Since now the exchanged
W+ bosons carry charge (unlike the photon, but similar
to the colored gluon), they can easily change the charge
of, for example, an electron to a neutrino in forward scat-
terings. Thus the collision term will lack the usual factor
q2 as for the quasiparticle damping and color diffusion
rate. Since SU(2)xU(1) gauge fields have similar in-

frared problems as SU(3) at the scale of the magnetic
mass, e2T, we insert this cutoff. Thus we find a dif-

fusion parameter for charged electroweak particles in the
very early Universe T )) M~ of order

D.&
- [win(1/o. )T] ', (23)

which is a factor o. smaller than when T (( M~.

Similarly the electrical conductivity is smaller, o,i

T/1n(l/n), when T » Mii as compared to rT, i

T/a ln(1/a) when T « Miv [3].
In summary, the flavor, spin, and color diffusion coef-

ficients have been calculated in QCD plasmas to leading
order in the interaction strength. Color difFusion and
the quark and gluon quasiparticle decay rates are not
suKciently screened and do depend on an infrared cut-
off of order the magnetic mass, m~~z g T; typically
D,,i, n, in(qadi/m z)T n, ln(l/ti. ,)T. Flavor and
spin difFusion processes are sufficiently screened by De-

bye screening for the longitudinal or electric part of the
interactions and by Landau damping for the transverse
or magnetic part of the interactions; typically Dz „,——

D i n~ In(l/as)T. As a consequence, color diffusion is
slow and the QGP is a poor color conductor. In the very
early Universe when T » M~ exchanges of W+ pro-
vides charge exchang" a mechanism analogous to color
exchange in QCD—and QED plasmas will also be poor
electrical conductors.
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