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Leading Quantum Correction to the Newtonian Potential
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I argue that the leading quantum corrections, in powers of the energy or inverse powers of
the distance, may be computed in quantum gravity through knowledge of only the low-energy
structure of the theory. As an example, I calculate the leading quantum corrections to the Newtonian
gravitational potential.
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The Newtonian potential for the gravitational interac-
tions

under general coordinate transformations, and will have
the form

&(")= Gmim2
9 = d xi/ g ——R+ crR + PR„R"'

K
is of course only approximately valid. For large masses
and/or large velocities there are relativistic corrections
which have been calculated within the framework of the
general theory of relativity [1], and which have been ver-
ified experimentally. At microscopic distance scales, we
would also expect that quantum mechanics would lead
to a modification in the gravitational potential in much
the same way that the radiative corrections of quantum
electrodynamics (@CD) leads to a modification of the
Coulombic interaction [2]. The present paper addresses
these quantum corrections to the gravitational interac-
tion.

General relativity forms a very rich and subtle classi-
cal theory. However, it has not been possible to com-
bine general relativity with quantum mechanics to form
a satisfactory theory of quantum gravity. One of the
problems, among others, is that general relativity does
not fit the present paradigm for a fundamental theory,
that of a renormalizable quantum field theory. Although
the gravitational fields may be successfully quantized on
smooth-enough background space-times [3], the gravita-
tional interactions are of such a form as to induce diver-

gences which cannot be absorbed by a renormalization
of the parameters of the minimal general relativity [3—5].
If one introduces new coupling constants to absorb the
divergences, one is led to an infinite number of free pa-
rameters. This lack of predictivity is a classic feature
of nonrenormalizable field theories. The purpose of this
paper is to argue that, despite this situation, the leading
long distance quantum corrections are reliably calculated
in quantum gravity. The idea is relatively simple and will
be the focus of this Letter, with more details given in a
subsequent paper [6].

The key ingredient is that the leading quantum cor-
rections at large distance are due to the interactions of
massless particles and only involve their coupling at low

energy. Both of these features are known from general
relativity even if the full theory of quantum gravity is

quite different at short distances.
The action of gravity is determined by an invariance

+pR„B A" + . . (2)

(We ignore the possibility of a cosmological constant,
which experimentally must be very small. ) Here R is the
curvature scalar, R» is the Ricci tensor, g = detg»,
and g„ is the metric tensor. Experiment determines

[1] K2 = 32vrG, where G is Newton's constant, and [7]

[
cr [, ~ P [& 10 . The minimal general relativity con-

sists of keeping only the first term, but higher powers of
R are not excluded by any known principle. The reason
that the bounds on n, P are so poor is that these terms
have very little effect at low energies/long distance. The
quantities R and R» involve two derivatives acting on
the gravitational field (i.e. , the metric g&„). In an inter-
action each derivative becomes a factor of the momen-

tum transfer involved, q, or of the inverse distance scale

q 5/r We will sa.y that R is of order q2. In contrast,
R2 or R„„R""are of order q4. Thus, at small enough
energies, terms of order R2, Rs, etc. are negligible and
we automatically reduce to only the minimal theory.

The quantum Quctuations of the gravitational Geld

may be expanded about a smooth background metric [3],
which in our case is Bat space-time

gPV gP V + +~/ V

'g~~ = diag(l, —1, —1, —1).

About a decade ago, there was extensive study of the
divergences induced in one and two loop diagrams, also
including matter fields [3—5,8,9]. When starting from the
Einstein action, the divergences appear at higher order,
i.e., in cr, P for one loop and in p at two loops. This is not
hard to see on dimensional grounds; the expansion is in
powers of K q Gq which forms a dimensionless com-
bination. These divergences can be absorbed into renor-
malized values of the parameters cr, P, p, which could in
principle be determined by experiment. As mentioned
before, higher loops will require yet more arbitrary pa-
rameters.

However, also contained in one loop diagrams are 6-
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nite corrections of a different character. These are non-

analytic contributions, which around fiat space have the

form a q 1n(—q ) or a q )/, . Because these are non-

analytic, e.g. , picking up imaginary parts for timelike q
(qz ) 0), they cannot be absorbed into a renormaliza-
tion of parameters in a local Lagrangian. Also, because

~
ln( —q ) ~&& 1 and

~ (/ . ~&& 1 for small enough q,
these terms will dominate over x q effects in the limit

q ~ 0. Massive particles in loop diagrams do not pro-
duce such terms; a particle with mass will yield a local
low energy Lagrangian when it is integrated out of a the-
ory, yielding contributions to the parameters n, P, p of
the Lagrangian in Eq. (2). In contrast, nonanalytic con-
tributions come from long distance propagation, which at
low energy is only possible for massless particles. Sim-
ilarly, to determine the coefficients of the long distance
nonanalytic terms, one does not have to know the short
distance behavior of the theory; only the lowest energy
coupling is required. Since both the enumeration of the
massless particles and the low energy coupling constant
follow from the Einstein action, this is sufficient to de-
termine the dominant low energy corrections.

The above argument is at the heart of the paradigm
of efFective field theories [10,11],which have been devel-
oped increasingly in the past decade. Indeed it is almost
identical to the way that low energy calculations involv-

ing pions are performed in chiral perturbation theory,
which is an effective field theory representing the low

energy limit of @CD. [There the role of (t is taken by
1/167rzFz —1/(1 GeV)z and the higher order renormal-
ized constants equivalent to n, P are of order 10 s.] The
interested reader is directed to the literature of chiral
perturbation theory [10—12] to see how an effective field
theory works in practice, including comparison with ex-
periment. It has recently been shown that the sicknesses
of R+ R~ gravity are not problems when treated as an
efFective field theory [13].

Let us see how this technique works in the case of the
Newtonian potential. When one adds a heavy external
source, use of the action of Eq. (2) plus one graviton
exchange leads to a classical potential of the form [7]

2

D(gv, ap(q) =
z P(gv, apr

1
(gv aP —

z [%a qvP + &(gP&va &(gv&aP) . (6)

We will follow the same procedure of calculating radia-
tive corrections as is done for the Coulomb potential in
/ED. The one loop diagrams are shown in Fig. 1. The
coupling to an external graviton field h'„" involves the
energy momentum tensor

hextTpvI
2 p, v

For an external spinless source with Lagrangian,

the tensor is

g""8„$8„$—mz Pz, (8)

T„„=8„$8„$—zrI„(BpPB"P —m P ), (9)

while for two gravitons it is longer,

T„"„=—h "B„B„hp+ zihB„B„h

+ (48„8„—Iri„„O) h,h —2h "h p

—O [h „h —hh„„] —(BgB„hh„" + BpB„hh"„)

+28, t" B„t.„+h" B„h.„
—(h„Oh +h„Oh „—h„„Oh)
+ 2r/„[h" O h), —zh h], (10)

In order to calculate the quantum corrections we need
to specify the propagators and vertices of the theory. It
is most convenient to use the harmonic gauge, 28„h„"=
O„h&, which is accomplished by including the following

gauge fixing term:

/sr = Q—g D h„—2D„h g Di, h„" —~D„h~ . (5)

The most useful feature of this gauge is the relative sim-

plicity of the graviton propagator, which assumes the
form

I/'((ei 1 4& r/r2 + le r/ro +--3' + 3'

= Gmimz ——128m G(cr+P)b (x) +1 2 3

r2 ———16vrGP,

r() ——32~G(3n + P).

Simply put, the effect of the order q4 effects of R2 and
R„„R" are short ranged. (The second line above indi-
cates that these terms limit to a Dirac delta function as
n, P ~ 0. This second form of the potential is most ap-
propriate for a perturbation in an effective field theory. )
In contrast the leading quantum corrections will fall like
powers of r, and hence will be dominant at large r.

i'

/

FIG. 1. One loop radiative corrections to the gravitational
vertex, (a)—(c), and vacuum polarization, (d), (e).
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where h = h&. The two graviton matter vertex in Fig.
l(b) follows from the Lagrangian

l:2 = + r. (2h""hq —2hh" )0„$0„$
—sr' (h h), —zhh) B„QO~Q —m Q . (11)

Gauge Gxing is accomplished in path integral quantiza-
tion by use of Fadeev-Popov ghosts, rl„T.he ghost La-
grangian is [3]

8 ho ~ = g grl"—' [Clrl„—R„„]&'.

quired to compute Feynman diagrams.
The calculation of the vertex correction is straightfor-

ward but algebraically tedious. Figure 1(c) does not lead
to any nonanalytic terms because the coupling is to the
massive particle. (It does have an infrared divergence
like the one in @ED, which can be handled in a similar
fashion [2].) In general the radiative corrected matrix
element will have the form

U~. = (&'
I &~.

l &) = Fi(q') &',p.. + p~&'. + q'&~.

+ F2(q ) qpqv gpvq I: (13)

Collectively, these Lagrangians define the vertices re- with Fi(0) = 1. For the first two diagrams the nonana-
lytic terms are found to be

2 2 3 1 ~2 K2~2
2 7 ~'mgF, =, — ln( —q') +—,AF, =, 3ln( —q') +—,for Fig. 1(a)32m& 4 16' qa

' 32~ 8 g q2

AI'i = 0,
K foal 13
32%' . 3

——ln( —q2), for Fig. 1(b)

so that 3, 1vrm2 2

Fi(q ) =1+ q ——ln( —q )+ — +32+2 4 16/ q2

The vacuum polarization diagram has been calculated previously [3]. In dimensional regularization with only
massless particles the ln( —qz) terms can be read off from the coefficient of the 1/(d —4) in a one loop graph. This
yields the nonanalytic terms

K 4 21
P ~'v f P 32 2 12O ~OP P I P 120 IP P (16)

where I have dropped many terms proportional to q„,q, etc. , which because of gauge invariance do not contribute
to the interaction described below.

The most precise statement, of the one loop results is in terms of the relativistic forms given above, Eqs. (13)
(16). However, it is pedagogically useful to combine these to define a potential. I will define this as the sum of one
particle reducible diagrams. For a two body interaction, one obtains this potential from the Fourier transform of the
nonrelativistic limit of Fig. 2, where the blobs indicate the radiative corrections. In momentum space we have

K 1 (1) ~ . (2) 1
V (q) ['iD„„p(p) +i D„„c iHq „piD„p p] V

& (q)42m, ~ 2m2

i~' ( 127, ~'(m, +m, )~
!4vrGmimz —

z
—

!
— lnq + (17)

where the second line corresponds to the nonrelativistic
limit p„= (m, 0), q = (0, q). In taking the Fourier trans-
forms, we use

—ig r
(27r) s q~ 47rr

'

(2vr) s q 2~zr~ '

(2~)" '" 2vr2r'

V(r) =—GMi M2 G(Mi + M2) 127 Gh

r rc2 30vr2 r2c

(19)
The first correction, of order GM jrc, does not contain
any power of h, and is of the same form as various post-
Newtonian corrections which we have dropped in taking
the nonrelativistic limit [1]. In fact, for a small test par-
ticle M2, this piece is the same as the expansion of the
time component of the Schwarzschild metric,

If we reinsert powers of 5 and c at this stage, we obtain
the potential energy

goo = 1 —GM1 2gM&C

1 + GM1 .pc2
C2

(2o)
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FIG. 2. Diagrams included in the potential. The dots indi-
cate vertices and propagators including the corrections shown
in Fig. 1.

which is the origin of the static gravitational potential.
Therefore we do not count this result as a quantum cor-
rection. However, the last term is a true quantum effect,
linear in h. We note also that if the photon and neutri-
nos are truly massless, they too must be included in the
vacuum polarization diagram. Using the results of Ref.
[8], this changes the quantum modification to

135 + 2N„Gh
30ir2 r2c '

where N„ is the number of massless helicity states of
neutrinos.

The effect calculated here is distinct from another finite
contribution to the energy momentum vertex —the trace
anomaly [14]. The trace anomaly is a local effect and is
represented by analytic corrections to the vertices, while
the crucial distinction is that the nonanalytic terms are
nonlocal. Note that the quantum correction above is far
too small to be measured. However, the specific number
is less important than the knowledge that a prediction
can be made.

The ability to make long distance predictions certainly
does not solve all of the problems of quantum grav-
ity. Most likely the theory must be greatly modified at
short distances, for example, as is done in string theory.
Most quantum predictions involving gravity treat quan-
tum matter fields in a classical gravitational field [14].
True predictions (observable in principle and without un-

known parameters) involving the quantized gravitational
field are few. However, the methodology of effective field
theory, when applied to gravity, yields well defined quan-
tum predictions at large distances.
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Kastor for numerous discussions on this topic and G.
Esposito-Farese, S. Deser, H. Dykstra, E. Golowich, B.
Holstein, G. Leibbrandt, and J. Simon for useful com-
ments.
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