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Resonators driven to self-oscillation via active feedback play an important role in technology. Among
the stochastic processes driving phase diffusion in such oscillators is noise from the feedback amplifier.
Here a technique is described by which phase diffusion due to this noise can be suppressed. We have
achieved a 10 dB reduction in phase diffusion by using the technique on an oscillator whose frequency-
controlling element is a nonlinear mechanical resonator. The technique, in principle, provides a quantum
nondemolition method of tracking a resonator's phase.
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Free running oscillators consisting of resonators driven

to self-oscillation via active feedback have considerable
technological importance. This importance stems from
the fact that these oscillators form the essential elements
of continuous-wave frequency sources and clocks and are
often the basis of other sensitive and accurate measuring
devices [1]. Generally, the amplifier or active gain medi-

um that feeds power back into the resonator to maintain
oscillation will also inject noise into the resonator. This
noise is a source of phase diA'usion or frequency jitter.
Here we show that if the resonator has a cubic reactive
nonlinearity, amplifier noise can be evaded, making it

possible, in principle, to reach the regime where the long
term frequency stability of the oscillator is determined

solely by the noise associated with the resonator's intrin-

sic loss.
The presence of a cubic nonlinearity in the restoring

force leads to a distortion of the resonance curve (ampli-
tude as a function of frequency) which appears as a pul-

ling of the Lorentzian line shape [2]. This distortion

grows progressively with increasing drive level, eventually

giving rise to a resonance curve which is multivalued for a

range of frequencies. A portion of the resonance curve
now corresponds to unstable oscillation, if the resonator is

driven without feedback. However, in the scheme con-
sidered here, phase information is fed back to the resona-
tor and this leads to stable operation throughout parame-
ter space. This is possible because the frequency remains
a single-valued function of the phase. The oscillator can
therefore be operated at points along the resonance curve
where the slope is infinite. Since the phase-versus-

frequency curve is also vertical at these points the fre-

quency is insensitive to the phase of the drive. This leads
to the enhancement in the long term phase stability dis-

cussed in this Letter.
The technique we propose and demonstrate provides, in

principle, a quantum nondemolition method [3,4] for
tracking a resonantor's phase [5]. This differs from pre-
vious noise squeezing and quantum nondemolition mea-
surement methods applied to mechanical resonators in

which only amplitude components were monitored [6,7].
Although the discussion presented here is in the con-

text of oscillators employing mechanical resonators, the

technique described is more generally applicable and may
even find use in optical frequency sources. It is noted

that methods employing nonlinearities and feedback have

been proposed and demonstrated for reducing laser
linewidth [8,9]. Our method, in contrast, focuses on long

term phase stability.
The resonator we consider is a simple unstressed rec-

tangular beam held rigidly at both ends. The beam is

placed in a uniform magnetic field oriented perpendicular
to the beam's long axis and is driven into vibration in the

plane perpendicular to the field via an alternating current
Aowing through the conducting beam. The amplitude of
the beam's motion is sensed by measuring the voltage in-

duced along the conductor.
The linear restoring force associated with small dis-

placements of the beam is due to the bending moments

which develop along the beam. Since the beam is an-

chored at its ends, however, a line tension also develops as

the beam is forced from its equilibrium position and its

length changes. This force is proportional to the cube of
the average displacement Y and is responsible for the

nonlinear behavior of the resonator. The equation of
motion for the resonator is

d Y dY
M +p — +K) Y+K3Y =Fo+FL+Fg .

dr

where M is the eft'ective mass of the beam, p is the damp-

ing constant of the loaded resonator, K] is the linear

spring constant, and K3 characterizes the strength of the

cubic nonlinearity. The force exerted on the resonator by

the drive is denoted by Fg, FL is the Auctuating force as-

sociated with the resonator s intrinsic loss (as required by

the Auctuation dissipation theorem); and F~ is the force
exerted on the resonator by the noise current IJv ] emitted
from the input port of the feedback amplifier. This force
is given by

F~ =/BIlv

where l is the length of the beam and 8 is the magnetic
induction.

Assuming the amplifier has a suSciently high input

impedance, the output of the amplifier with voltage gain
6 is
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Vo„( =G(VR+ VN2) .

Here

(3) noise from the amplifier's input is given by

DN) =(Vtt)i, ,/166',
Y

Vg =lB
dt

(4)

is the voltage induced in the resonantor conductor, and
VN2 is the fluctuating noise voltage (referred to input)
generated in the amplifier. Although it is straightforward
to treat more general cases, for simplicity the noise
sources I~~ and V~2 will be taken to be statistically in-

dependent. The output voltage is fed through a phase
shifter and then into an amplitude limiter [10] whose out-
put drives the mechanical resonator.

To describe the action of the phase shifter and the lim-
iter we write Vo t in the form

where i, , is the mean square current per unit bandwidth
for IN~ at the oscillator's resonant frequency and 8 is the
total energy stored in the resonator. The constant DN2

characterizing the diffusion due to noise from the arnpli-
fier's output is given by

DN2 =~", ./4r r(Vt't) . (9)

Here i,~, is the mean square voltage per unit bandwidth

for V&2 at the oscillator's resonant frequency and r~
=p/2M is the amplitude ring-down time for the loaded
resonator. The constant DL characterizing diffusion due
to noise from the resonator's loss is given by

V t(l) V(t)cos[Ot+p(t)] (5) DL rtL/r TC . (10)

(bf ) (DN I +DN2+ DL )/4tr (7)

The constant D~t characterizing the diffusion due to

where 0 is the self-oscillation frequency. The phase
shifter shifts the phase by a constant amount pc. The
limiter replaces the voltage V(t) with some fixed voltage.
The resulting signal drives a current through the resona-
tor conductor providing the force [11]

FD =Fpcos[ot+p(t)+pc] .

The two constants pc and Fp are set by the experimenter
and determine the self-oscillation frequency 0 which usu-

ally difl'ers from the natural oscillation frequency Ap

=+K~/M. Typically the detuning ro=Q —Op will be
small compared with 00.

In general, the noise sources Ig~, V~2, and FL will

cause the phase of the oscillator to diffuse. We now

present the results of a straightforward analysis in which

one linearizes about the steady state solution to determine
the system's response to the three noise sources. It is

shown that by the proper choice of operating point, the
nonlinearity of the resonator can be exploited to make the

long term phase wandering of the oscillator immune to
V~2. Further, by making the coupling between the reso-
nator and the amplifier suSciently weak the effect of I~~
on phase diffusion can be made negligible compared to
the intrinsic noise FL. The oscillator's long term phase
stability will then be determined solely by the quality of
the resonator. Phase stability translates into frequency
stability since the two are related through b'f =bp/2trr
where bp denotes the root-mean-square (rms) deviation
from the mean phase accumulated in the time interval r,
and bf is the rms deviation of the frequency from its

mean value as reported by a frequency counter with

counting time r.
We first consider the case of an oscillator with a linear

resonator which is operated at the maximum of the reso-
nance curve. At this point this system exhibits optimum
performance with respect to phase diffusion. The expres-
sion for (bf) is

The spectral density gL for the available noise power
from the losses responsible for resonator damping, under

thermal equilibrium conditions, is given by gL =kqT
~here kg is Boltzrnann's constant and T is the tempera-
ture of the resonator.

The expression for (bf) corresponding to the opera-
tion of the oscillator with a nonlinear resonator at the

peak of the resonance curve (where pc = —x/2) is more
complicated than Eq. (10). However, in the case when

D~2 is large compared to both Dg~ and DL we have

(bf) =DNA/4tr r . (11)
Note that D~2 does not depend on the strength of the
nonlinearity K3. Therefore, when DN2 is the dominant
diffusion constant the performance of the nonlinear sys-
tem operated at the peak of the resonance curve is identi-
cal to that of the linear system in which pc has been opti-
mized to minimize phase diffusion, provided both oscilla-
tors have the same amplitude of oscillation. The noise
performance of the nonlinear system at the peak of the
resonance curve thus provides a convenient reference with

which the performance of the optimized nonlinear system
can be compared.

We now consider the noise performance at a unique
point [121 which is reached for a particular value of the
drive Fp and with pp adjusted so that the displacement
lags the drive by 2z/3. At this critical point the slope of
the resonance curve is infinite but the entire curve
remains single valued. The amplitude is J3/2 of its max-
imum value, and the detuning [131 to is J3/rr. At this
point,

(bf) = (DN i+DL)1

E'r

+
2 2 (DN2 —3DN) —3Dt )(1 —e ) . (12)

4n s
For r « rr, this equation reduces to Eq. (7) so there is
no improvement in the short term phase stability. For r
su%ciently large to satisfy the conditions z )) r ~ and

DN
ry. , (13)

N I DL
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Eq. (12) reduces to

(~y)' (O-. , +D, )l"r . (l 4)

Note the absence of a term containing D~q, at the critical
point the amplifier's output noise plays no role in deter-
mining the oscillator's long term phase stability. More-
over, since D~i is proportional to the square of the mag-
netic field via its dependence on Vg, Dlv i can be made
small compared to DI by operating in a suSciently small
field. Thus by operating the oscillator at the critical point
and making the coupling between the resonator and the
amplifier su%ciently weak one can make the long term
stability of the oscillator independent of amplifier noise.
Comparing this result with Eq. (7) one sees that the long
term phase stability achieved by operating at the critical
point with a noisy amplifier is only a factor of 2 ahorse

than what one could have achieved using a linear resona-
tor and a noiseless amplifier.

The resonator that we employed to demonstrate the
feasibility of this technique was etched from a high purity
silicon wafer which also provided the support for the
beam. The length, width, and thickness of the beam
were, respectively, 3.6 mm, 127 pm, and 26 pm. A thin

layer of gold evaporated onto one surface provided a con-
duction path with a low temperature resistance of 17 A.
The resonator was located in a uniform field of 1 T and
mounted on a platform whose temperature was precisely
regulated at l00 mK. The resonant frequency (lowest
mode) was I 5.994 kHz. The quality factor Q was

375 000.
Figure 1 shows the phase difference between the drive

force and the displacement of the oscillator measured for
three values of the drive current. These results were ex-
tracted from simultaneous measurements of the in-phase
and quadrature components of the amplitude of the re-

sponse. The solid portions of the curve were mapped out
during slow ramps of the frequency. The individual

points were obtained with the oscillator operating in the
self-excited loop discussed above by making incremental
changes in the setting of the phase shifter.

The critical drive was most accurately determined by
slowly modulating the phase about —2z/3 at various
drive levels. The accompanying swing in the oscillator's
frequency reached its minimum amplitude at a drive of
7.2 nA.

For the studies of the noise behavior of the oscillator
the voltage induced along the vibrating beam was fed into
two amplifiers. The first formed part of the oscillator
loop. Its output, ho~ever, was now combined with that of

B noise generator. %'ith this modification the effective
output noise could be increased so that the resulting fre-

quency jitter of the oscillator was above the noise floor of

the frequency counter. The second amplifier led directly
to the frequency counter. By this method, the direct
broad-band amplifier noise was coAveAlently separated
from the narrow-band frequency fluctuations returned by
the resonator. This separation also could have been
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FIG. 1. Measured phase difference between the drive force
and the displacement of the nonlinear oscillator plotted as a
function of the frequency. Results are sho~n for three different
values of the drive current. The natural resonant frequency J'o

is 15.994 k Hz.
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FIG. 2. Frequency Auctuations versus oscillator drive at an
averaging time of 20 sec. The solid cricles show results ob-
tained with the oscillator operating at the peaks of the reso-
nance curves where the phase is —90 . The open circles were
measured at amplitudes equal to K3/2 of the peak values where
the phase is —120'.

achieved in a single amplifier setup by inserting B very
narrow band-pass tracking filter in front of the frequency
counter.

Figure 2 shows rms frequency fluctuations measured
with Bn averaging time of 20 sec plotted as a function of'

the oscillator drive scaled by the inverse of the critical
point drive. The solid circles correspond to measurements
at the peaks of the resonance curves, i.e. , with the phase
set at —90'. The open circles are data obtained Bt B

phase setting of —120'. %hen the reduced drive is unity
Bt this phase shift the resonator is at the critical point.
There is a dramatic difference in the drive dependence f'or
the two sets of data, with the open-circle results exhibit-
ing a well defined minimum centered near a reduced
drive of 1. This is as one might have anticipated based on
the phase-versus-frequency curves of Fig. 1. Note also
that in the vicinity of the minimum the fluctuations fall
below those of the linear system (i.e., the solid circles)
even though the amplitude of the response is Aow 15%

2994



VOLUME 72, NUMBER 19 P H YSICA L R EV I EW LETTERS 9 MAY 1994

100

10
C)

I I I I I I I I I

10
~ (s)

100

FIG. 3. Frequency fluctuations at the critical drive as a func-
tion of counter averaging time. The open circles are data ob-
tained at the critical point. The solid circles are results ob-
tained at the peak of the resonance curve. Note the 10 dB
reduction in noise achieved at the critical point for r =100 sec.

smaller. The dashed curve is a fit of the resonance peak
data to Eq. (11) with corrections applied for the instru-
ment noise floor and for a contribution due to the direct
feedthrough of the drive voltage. This latter term, which
is proportional to v, JVRr will be discussed in a subse-
quent paper along with the theoretical expressions leading
to the solid curve describing the data at —120'.

The relative improvement in noise performance
achieved by operating the oscillator at its critical point
becomes greater with increasing counter times as shown
in Fig. 3. Here frequency fluctuations measured at the
critical drive are plotted as a function of the averaging
time on log-log scales. The solid circles were obtained
with the phase adjusted so that the oscillator was operat-
ing at the peak of the resonance curve. The open circles
were obtained at the critical point. For r ~10 sec both
sets of fluctuations are dominated by the contribution due
to the direct pickup of the drive noise and show a I/r
dependence. For longer times the solid circles show the
I/v i dependence expected for a linear system. The open
circles, however, continue to exhibit a I/r dependence out
to our longest averaging times. At r =100 sec the critical
point frequency fluctuations have become a factor of 3
smaller than those of the linear oscillator. Equation (12)
predicts that the open-circle data should continue falling
with this time dependence until hitting the intrinsic loss
curve. The critical point fluctuation data would then
cross over to a I/Jr dependence but now with the ampli-
tude corresponding to the intrinsic loss. The dashed and
solid curves in Fig. 3 are fits by Eqs. (I I) and (12), re-
spectively, again with DN2 assumed large compared to
DNi and DL and with corrections applied both for the in-
strument noise floor and the feedthrough of the drive sig-
nal. The htted value of ('rms is 5.0 VHz ', only 8%
larger than the directly measured value. There is thus
quantitative agreement between experiment and theory
and a direct demonstration that the phase diffusion due to
amplifier noise can be significantly reduced by operating

at the critical point of a nonlinear oscillator.
Interpreted as Heisenberg equations of motion Eqs. (I )

through (6) hold quantum mechanically [14]. The rest of
the equations then follow from a straightforward quan-
tum analysis in which quantum mechanics places funda-
mental lower bounds on the size of the noise emitted by
the amplifier and the losses. The technique described
here thus allows one to evade amplifier noise, with the
consequence that the phase diffusion is determined solely

by the quantum noise associated with the resonator loss.
I f the system is used as a receiver and the resonator loss

results from coupling to a signal source the phase diffu-

sion, provided the signal is suitably squeezed, will be
much smaller than that corresponding to a signal source
consisting of vacuum fluctuations. It is thus argued that
the measurement technique described here functions as a
quantum-nondemolition measurement method for con-
tinuously monitoring the phase of a resonator.
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