
VOLUME 72, NUMBER 19 P H YSICAL REV I EW' LETTERS 9 MAY 1994

Stochastic Resonance in Bistable Systems Driven by Harmonic Noise
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%'e study stochastic resonance in a bistable system which is excited simultaneously by ~hite and har-

monic noise which we understand as the signal. In our case the spectral line of the signal has a finite
width as it occurs in many real situations. Using techniques of cumulant analysis as well as computer
simulations we find that the eAect of stochastic resonance is preserved in the case of harmonic noise exci-
tation. Moreover, we show that the width of the spectral line of the signal at the output can be de-
creased via stochastic resonance. The last could be of importance in the practical use of the stochastic
resonance.

PACS numbers: 05.40.+j, 02.5G.—r

The main topic in noisy driven nonlinear systems in the
last decade is without doubt stochastic resonance (SR)
[I]. It is now well known that a small harmonic or poly-
harmonic signal forcing a stochastic nonlinear system can
be amplified via SR [2]. It happens most effectively for
an optimal noise intensity of the stochastic force in or ap-
plied to the nonlinear system. If the noise controlled time
scale (say the transition time between the two stable
states of a bistable system or the mean time to reach the
boundary of inducing stochastically a certain event) coin-
cides with the time scale of the signal the noise is able to
amplify the signal by several magnitudes.

Besides a lot of theoretical work, numerical, and analog
simulations [1,3,4] several experimental verifications and

results in periodically driven systems were reported. This
concerns results in laser [5], in paramagnetic systems [6],
or ion transport through channels of cell membranes [7].
Of high interest are investigations about periodically
stimulated sensory neuron activity [8] and about the
amplification of the information transfer in crayfish re-

ceptors showing the typical behavior of SR [9].
SR was investigated in the past for periodically driven

systems. However, real signals always have a finite spec-
tral width. Effects of a finite spectral width are, there-

fore, of great importance, especially for real physical ap-
plications. The purpose of this Letter is to study the
eff'ects of the finite width of the input signal. We base
this on a rather simple model, the stochastic bistable sys-

tern driven by white noise as the source of the am-

plification and driven by harmonic noise as the signal.
The influence of harmonic noise y(t) on bistable systems
was studied in [10,11]. SR was considered in a bistable
system with a periodical signal and using the harmonic
noise as the source for the amplification [12].

Harmonic noise y(t) was introduced [10] by the two-

dimensional stochastic differential equations (SDE),

y =s, s = —I s —Q02y+ J2eI ri(t),

where ri(t) is Gaussian white noise with &ri(t)) =0,
(rt (t ) rt(t ')) 8(t —t '). Equation (1) determines the
two-dimensional Ornstein-Uhlenbeck process y (t ),s (t)
with the power spectrum

Syy(to) =
21-2+ (~2 Q 2) 2

and the mean square displacements (y ) =e/Qo, &s ) =e,
(ys) =0. If Qo) I /4 then the power spectrum (2) has a

peak at the frequency top =JQo —I /2 with the width

AQjg +top+I coj +tap I roj,

where toj =QQO —I /4.
Let us consider a simple overdamped bistable system

driven by white and harmonic noises. It yields

x =x x'+ 42D((t)—+y(t),

where y(t) is harmonic noise from SDE (1) and g(t) is

Gaussian white noise which is statistically independent
from rt(t ) .

There are a few theoretical and experimental ap-
proaches to investigate SR [2-4]. Since in our case the
three-dimensional stochastic process (4) is a stationary
one, we cannot simply apply the techniques developed for
SR. Nevertheless, SR needs a dynamical description
which implies in our case the determination of the power

spectrum of the output process x(t) We propose a kin.d

of linear response theory [13] which is based on a cumu-

lant expansion [14].
The Fokker-Planck equation (FPE) for the three-

dimensional probability density p =p(x,y, z, t) according-

ly to the SDE (4) reads
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B,p = —8„(x—x '+y) p —
Gasp

—a, ( —rs —nay )p+ D B„„p+el B„p . (s)

The notions for the first and second order cumulants of
the process [x (t),y (t),s (t)[ are

&x
PCp

6M' —
1

E(I —3M2 —I )
0 [(I —3M2) (I —1+3M2) Ap]

( I —3M 2) (r —I +3M 2) Op

(io)

K, (t) —= (x), t~2(t) =(x') —(x)',
a.„y(t)—= (xy) —(x)(y),

x„,(t) = (xs) —(x)(s) .

(6)

From the FPE (5) we derive the equations for the evolu-

tion of the cumulants (6) and determine their stationary
states. It turns out that the stationary values of the first

order cumulants are equal to zero and therefore not of in-

terest. We further consider the case of a weak signal

(e« 1). Then applying ideas of the linear response

theory we assume the second cumulant in the form

tr2(t) =M2+tr2(t) . (7)

M2 denotes the second cumulant of the unperturbated
stochastic bistable systems in the absence of harmonic
noise (m=0) [4],

In the same way we may derive the equations for the
correlation functions,

R„,(r ) =(x(t)x(t+ r )),
R„,(r) =(x(t)y(t+r)),

R, (r ) =(x(t)s(t+ r )) .

Again for R»(r) we use the linear approximation with

respect to the harmonic noise perturbations: R„,(r)
=Rp(r)+R„„(r). Rp(r) is the correlation function of
the unperturbated bistable system with white noise. For
the Rp(r ) we use here the approximation which takes
into account only transitions between potential wells [4]:

Rp(r) =M2exp( —yr), y= exp — . (11)1

x 4D

Then again in Gaussian approximation we obtain the
equations

D D -3t2( —
1 lv'2D )Mp=

2 D )t2( —I / J2D )
(8) = (I —3M2)R» —3K'2Rp(r )+Rx&(r ),

(i2)

g Jcp —K'p 6M' &p+ &~y,

„y =x„y(I-—3M2)+ &y')+ tr, ,

& i„,=x„,(1 —3M2 —I ) —Qptr ~.

(9)

From (9) we find the stationary values of the cumulants:

where D, (x) is the parabolic cylinder function and x2(t)
represents small deviations of M2 due to the harmonic
noise. Then we substitute Eq. (7) into the cumulant

equations and neglect the terms of higher order in e.

However, because of the nonlinearity of the system, the
chain of cumulant equations is unclosed. To close the
chain of cumulant equations we use a Gaussian approxi-
mation which takes into account first and second order
cumulants [14]. We emphasize that this approximation
concerns only the deviations induced by the harmonic
noise. The non-Gaussian behavior of the fluctuations of
the purely white noise driven bistable system are con-
tained in expression (8). Thus, we expect qualitative

right results in the case where the strength of the har-
monic noise is small, i.e., for small signals only. This will

be proven later by the coincidence of the theoretical re-
sults with the performed computer simulation for small

signals.
The resulting cumulant equations in the Gaussian ap-

proximation read

dRxy dRxs 2=Rxs = I Rxs fipRxydi dr

with the initial conditions

R„(0)=F2, Rxy (0) = xxy, R„(0)=x„. (i3)

The power spectrum S(cp) then follows as S(to)
=Sp(tp)+S(tp), where Sp(tp) corresponds to the Rp(r )
and S(cp) is the Fourier transformation of R„(r). It
yields the final expression for the power spectrum,

Stp =
2 2

1+yM2 3Cx2

+y

2eI C a 2+ 2~2 ~2

(g2+ II 2) 2 ~2I-2 (II 2 ~2) 2+1-2 2

where a =1 —3M~ and the constant C is defined from the
initial conditions (13).

The power spectrum has a peak at the frequency m, „,
which can be determined from Eq. (14). The frequency
depends on the parameters of the system due to the ex-
istence of correlations between processes x (t ) and y (t ).
The dependence of co,„on the intensity of white noise is
shown in Fig. 1. The dotted line corresponds to the fre-
quency co& at which the spectrum of the input signal takes
its maximum. It is interesting that there exists the value
of noise intensity (D =0.23) at which the shift between

2989



VOLUME 72, NUMBER 19 P H YSICA L R EV I E% LETTERS 9 M&v l994

0.0906 1.20

0.0905

~~ 0.0904
3

0.0903

1.15

c 1.10

1.05

1.00

000 050 1 00 1 50 0.95
0.00 p 5p 1,00 1.50

D

FIG. I. The dependence of the central frequency of the out-
put signal vs white noise intensity. The dotted line corresponds
to the central frequency of the input signal. The parameters are
I =0.06, 00=0.1, i.'=0.025.

FIG. 3. The dependence of R~& vs 0 for the same parame-
ters as in Fig. I.

co~» and roz takes its extremum and is equal to zero.
Note that in the case of a periodical signal such a depen-
dence cannot be observed, since the system is nonauto-
nomous, the Fokker-Planck equation has a periodical
solution, and as a consequence the power spectrum al-
ways contains the 8' peak at the signal frequency.

Now we consider the signal-to-noise ratio (SNR). We
define the SNR (in dB) as

S(ro,„)
R = lOlog- (is)

~out~ )LA (i6)

where BQ;„ is the signal spectral width at the input (3)
and h, A,„t is the signal spectral width at the output. The
dependence of R~n versus the white noise intensity D is

The dependence of the SNR versus the white noise inten-

sity D is shown in Fig. 2. The SNR takes its maximum
at the noise intensity D =0.46. Thus, the phenomenon of
SR is preserved in the case of harmonic noise.

From the practical point of view of possible applica-
tions it is interesting to estimate the width of the spectral
peak of the signal at the output. The width of the spec-
tral peak can be obtained from Eq. (14) for the output
power spectrum. To estimate the changes of the signal
spectral width we introduce the ratio

shown in Fig. 3. It is seen that the case of maximal
amplification corresponds to the minimum in dependence
on R&n(D). Hence, the spectral width of the signal at
the output can be decreased via stochastic resonance.

The algorithm for simulation of a bistable system
driven by harmonic noise was developed in [10]. The
main advantage of this method is that it allows the solu-
tion of the SDE (i) without the procedure of integration.
We simulated the SDE (4) and calculated the power
spectrum using fast Fourier transform.

Results of simulations of the po~er spectrum are
shown in Fig. 4 for fixed parameters (Qo=O. I, a=0.025,
D =0.4) and for I =0.06, 0.001. For small values of i,
peaks at the odd harmonics of corn, „appear which resufts
from the nonlinearity of the system. Results of the com-
putation of the SNR are presented in Fig. 5 and show
qualitative agreement with cumulant analysis. Thus, we
also have shown numerically the existence of Sr in the
case of excitation by harmonic noise. The new topics in

our theory, the shift of the frequency as well as the de-
crease of the width of the output signal in the resonant
case, need further experimental verification.

We have studied a bistable overdamped system driven
simultaneously by white and harmonic noise. The latter
one can be considered as an appropriate model of real sig-
nals which always have finite spectral widths. We found
theoretically and numerically the effect of SR. For a cer-
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FIG. 2. SNR vs D for the same parameters as in Fig. 1.

FIG. 4. Numerically simulated po~er spectrum for the pa-
rameters Qa =O. i, e =0.025: (i ) for I =0.6 and (2) for
I- =0.00I.
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tain intensity of white noise the signal (harmonic noise) is
amplified. It results in an increase of the SNR.

The driving of a bistable system by a signal with a
finite width around some central frequency raises new
questions. Several topics can only be investigated due to
the continuous spectrum of the signal. Thus we found
theoretically a decrease of the spectral width of the out-
put signal. Also, the frequency at which the output spec-
trum takes its maximum depends on the noise intensity.
Maximal amplification is reached in the SR case at the
central frequency of the input signal which we under-
stand as a synchronization of the bistable system.
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