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Evidence for Entropy-Driven Demixing in Hard-Core Fluids
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We report the first observation, by computer simulation, of a purely entropic demixing transition
in a three-dimensional binary hard-core mixture. This transition is observed in a mixture of large
and small cubes. %'e also find evidence for demixing in other hard-core Quids and, in the case of
an athermal polymer solution, we observe a purely entropy-driven polymer collapse. For the study
of both the hard-core demixing and polymer collapse, it was essential to use novel collective Monte
Carlo moves.

PACS numbers: 82.60.Lf, 61.25.Hq, 64.75.+g

The theoretical study of the causes of phase separa-
tion in binary mixtures is one of the oldest in statis-
tical thermodynamics. In fact, for simple liquid mix-
tures [1] the first microscopic theories date back to van
der Waals, while for polymer solutions the Flory-Huggins
theory plays a similar role. In view of the almost over-
whelming amount of experimental and theoretical work
that has since been spent on the study of liquid mixtures,
one might think that the factors that are responsible for
demixing are, by now, well understood. Surprisingly, this
is not the case. In particular, it is still an unresolved ques-
tion if demixing can be driven by entropic effects alone.

Of course, from thermodynamics we know that phase
separation will take place in a system at constant vol-
ume and temperature T, if this results in lowering the
Helmholtz free energy A = E —TS. There are two ways
to lower the free energy of a system: One is to lower the
energy E; the other is to increase the entropy S. Most
theories of fluid mixtures are based on the assumption
that demixing results in a lowering of E and, at the same
time, an increase of TS. Howeve—r, if we consider ather
mal mixtures, i.e., mixtures of particles that have only
excluded volume interactions, then phase separation can
only occur if demixing results in an increase of the en-

tropy. One trivial way in which this can happen is if the
hard-core interactions in the mixture are "nonadditive, "
i.e. , oAB ) (orgy + ops)/2, where o,s denotes the dis-
tance of closest approach of particles of type i and j. In
fact, the demixing transition in nonadditive hard-sphere
mixtures is well established and has been studied exten-
sively [2—4].

More interesting is the case of additive hard-core mix-
tures, i.e., o'~s = (oAA+ o~~)/2, and here the situation
is more confused. For additive hard-sphere mixtures, we
have two conflicting predictions. In 1964 Lebowitz and
Rowlinson [5] showed that the (approximate) Percus-
Yevick integral equation for hard-sphere mixtures pre-
dicts no fluid-fluid phase separation for any size ra-
tio or density. Indeed, simulations of hard-sphere mix-
tures have thus far not provided any evidence for Buid-
fluid demixing [6—10]. However, more recently Biben

and Hansen [ll], using the so-called Rogers-Young in-
tegral equation for hard-sphere mixtures, found evi-
dence for a spinodal instability in a fluid mixture of
spheres of sufBciently dissimilar sizes. Similar predic-
tions have subsequently been made with other approxi-
mations [12]. Clearly, it would be interesting if the ex-
istence of a demixing transition could be unambiguously
demonstrated in a computer simulation of an additive,
hard-core mixture.

In this Letter we present the results of such a simula-
tion study. The model that we consider is a mixture of
large and small cubes on a lattice. This model is clearly
additive: It difFers from hard-core lattice models stud-
ied previously [13] in that it can fill space at close pack-
ing both in the mixed and in the pure phases. Hence
there is no trivial volume-driven demixing. In our sim-

ulation we considered mixtures of cubes with diameter
ratios (i.e. , ratios of the edge lengths) of 2 or 3. The
diameter of each cube corresponds to an even number of
lattice spacings. We performed grand canonical Monte
Carlo (GCMC) simulations [14] where the independent
variables were the fugacities of the large and the small
cubes. In order to speed up equilibration, we used collec-
tive particle moves that employed a generalization of the
configurational-bias Monte Carlo scheme of Ref. [15]. In
this approach, the large particle was moved to a random
trial position. Typically several small particles would

occupy this region in space. These particles were then
moved to the volume vacated by the large particle, and
inserted using Rosenbluth sampling [16]. The trial move
was then accepted with a probability determined by the
ratio of the Rosenbluth weights of the new and the old
configuration. Of course, a trial move would be rejected
immediately if it resulted in overlap of two or more large
particles. In addition to the moves in which we displace
particles, we also perform trial moves in which we add or
remove a large or small particle and trial moves that at-
ternpt to change the identity of a particle (large to small,
or vice versa .

In Fig. 1, the fugacity of the large cubes is plotted
versus the volume fraction of the large cubes for a mix-
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polymer collapse immediately implies the existence of a
demixing transition in this athermal polymer solution.
The present simulations support existing theoretical pre-
dictions of the existence of entropy-driven demixing in
polymer blends and solutions [18,19]. Although simula-
tions of athermal polymer solutions have been reported
before [20], the present result is to our knowledge the first
unambiguous demonstration of a purely entropic polymer
collapse.

In summary, we have presented the first observation
of a demixing transition in an additive hard-core lattice
mixture and we have found a purely entropy-driven col-
lapse in a lattice model of an athermal polymer in a hard-
core solvent.

The work of the FOM Institute is part of the scientific
program of FOM and is supported by the Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO).
We gratefully acknowledge discussions with J.P. Hansen
and thank B.M. Mulder, B. Jerome, and J.W.M. Frenken
for a critical reading of the manuscript.

FIG. 3. Snapshot of conformation of a hard-core lattice
polymer (1V = 100) without hard-core solvent (top) and in a
solution of hard-core monomers with a volume fraction of 0.7
(bottom). Note the solvent-induced collapse.

the polymer it was essential to use a novel Monte Carlo
scheme. In this scheme, we included collective Monte
Carlo moves that allowed us to carry out conformational
changes on any subsection (interior or terminal) of the
polymer chain [17].

We performed simulations of a single polymer at dif-
ferent values of the chemical potential of the solvent. We
find that the square of the radius of gyration Rz scales as
Ns", where N denotes the number of monomeric units
in the polymer (see Fig. 2). For low solvent fugacities
that correspond with solvent volume fractions of 0 and
about 0.3, we find v = 0.56 6 0.02, which corresponds to
the case of a polymer in a good solvent (v = 0.58). In
contrast, for a higher value of the solvent fugacity (corre-
sponding to an average solvent volume fraction of 0.7), we
find v = 0.34 6 0.02. For a collapsed polymer we expect
"Euclidean" scaling: v = I/3. Hence, by increasing the
solvent fugacity in this athermal polymer solution, we can
make the polymer collapse. Figure 3 illustrates the very
drastic change in the polymer shape with increasing sol-
vent fugacity. It is important to note that the collapse of
the polymer chain in a solvent is, in a sense, counterintu-
itive. If one considers the polymer chain, there is a large
amount of entropy lost by the polymer. However, the in-
crease in entropy of the solvent molecules overrides this
apparent loss. The observation of such a solvent-induced
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