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We study the dynamics of a system of bosonic or fermionic atoms in a microscopic trap undergoing
laser cooling. We show that the stationary state can be described by a Bose-Einstein or Fermi-Dirac
distribution, respectively. Fluorescence from the system reflects quantum statistical properties.
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Recently there has been a growing interest in studies
of quantum statistical properties of cold atoms. In part,
this is motivated by progress in laser cooling and trap-
ping of neutral atoms [1]. In addition, and parallel to
these efforts, the experimental realization of the Bose-
Einstein condensation (BEC) in magnetic traps has be-
come a challenging task of atomic physics [2].

In laser cooling, an atomic transition is excited by near-
resonant laser light so that the momentum transfer asso-
ciated with the induced and spontaneous emission cycles
provides a dissipative mechanism for the atomic center—
of-mass motion. Recent achievements in laser cooling
are exemplified by new cooling mechanisms which have
led to temperatures close to or below the one-photon re-
coil limit [1,3], and the observation of quantized atomic
motion in optical molasses [4].

With increasing atomic densities and decreasing tem-
peratures one expects the quantum statistics related to
the bosonic or fermionic properties of the cold atoms to
become observable. In addition, we expect collective ra-
diative atomic interactions and the complex coupling of
the laser to the electronic atomic degrees of freedom to
alter significantly the dynamics of the cooling process.
Thus, on the theoretical side the challenge is to gener-
alize the single atom master equation of laser cooling
to include many particle and quantum statistics effects.
Such a master equation will provide a complete descrip-
tion of the dynamics of the cooling and predict the steady
state distribution of the atoms. Of particular interest is
the relationship between these stationary solutions of the
master equation for a finite number of atoms N and the
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thermodynamic canonical ensemble as given by the Bose-
Einstein (BED) or Fermi-Dirac distributions (FDD). We
emphasize that in the case of laser cooling the laser pro-
vides the coupling to an effective ezternal reservoir which
establishes the equilibirum distribution. This allows us
to study an ideal Bose or Fermi gas to the extent that
collisions are negligible. This is in contrast to the stan-
dard approach of, for example, BEC in a dilute Bose gas,
where collisions play a fundamental role in establishing
a thermodynamic equilibrium and provide the thermal-
ization necessary for an evaporative cooling mechanism
[2).

In this Letter we study the dynamics of a one-
dimensional system of noninteracting atoms in a micro-
scopic trap undergoing laser cooling. We show that in the
present model the stationary state of such a system can
be described by the BED or FDD. The control parameter
of the system is the detuning of the driving laser which
plays a role analogous to the temperature. In particular
we consider a system of N identical two—level atoms with
(electronic) ground state |g) and excited state |e) in a
trap. The atoms interact with a laser field of wavelength
A. We assume that the trapping potential is harmonic,
so that the energy level scheme of an atom in the trap
consists of a double ladder of equidistant states. For sim-
plicity we locate the trap at the node of a standing wave
laser [5]. When the ground state function of the trap has
a size ag < A we are in the Lamb-Dicke limit (LDL), so
that the Lamb-Dicke parameter 7 = 2mag/\ is small and
the model becomes solvable.

The second quantized Hamiltonian describing such a

2977

© 1994 The American Physical Society



VOLUME 72, NUMBER 19

PHYSICAL REVIEW LETTERS

9 MAY 1994

system of atoms can be constructed along the lines de-
scribed in Refs. [6]. Using standard methods [7] we can
then eliminate the photonic degrees of freedom and ob-
tain a second quantized master equation for the atomic
density operator p (A = 1),

p=—i[Ho + Hy,p| + Lp. (1)
The free atomic Hamiltonian is
oo
Hy=)" [Ekglgk + (Ek + wo)elek} ; (2)
k=0

where Ey. = kv are energies of levels in the harmonic trap
potential, v is the trap frequency, and wy is the frequency
of the electronic transition. The operators g, g, eL,
and ey, describe creation and annihilation of atoms in the
ground and excited electronic states, respectively. These
operators fulfill the canonical bosonic commutation or
fermionic anticommutation relations, depending on the
spin of the atoms. In the LDL (n < 1) the Hamiltonian
Hj, describing interactions of atoms with the laser takes
on the simple form

Q ) [ ]
HL = %e—zw[,t Z \/E IiEL_lgk + ELgk_l] + H.C.,
k=1

with Q the Rabi frequency of the atomic transition, and
wy the laser frequency. We denote the detuning by
6 = wp —wp. The Hamiltonian H;, describes the transi-
tions from the kth ground electronic state to the excited
electronic states with indices k + 1 [8]. The absence of
excitations diagonal in the vibrational quantum number
k is due to the fact that the trap is located at the node.

Finally, the last part of the master equation describes
spontaneous emission processes. Since all atoms are lo-
cated within a distance smaller than ), the spontaneous
emission has here a purely super-radiative character [9].
In the second quantized theory of moving atoms the spon-
taneous emission causes transitions from the excited to
ground states with the same k so that

o0
Lp = g > [2g£ekpe,t/gk' — el gr glexp — peLgkngek] ,
kK’
where I' = 27y denotes the spontaneous emission rate for
a single atom. Note that the extra diffusion terms give
higher order contributions in 7, and can therefore be ne-
glected. We stress that the characteristic dissipative time
scale of the system is associated with the inverse of the
cooperative spontaneous emission rate I'y = NT.

Note that in the absence of the laser (2 = 0) the master
equation (1) describes the dynamics of super-radiance [9].
In that case, every state of the system for which all atoms
are in the ground electronic state, is stationary. Turning
on the laser introduces the possibility of transitions to
the excited electronic states. The rates of those transi-
tions in the limit of weak field [P <« max('y,8)] will
be of the order of n?Q?/max(Ty,6), i.e., much smaller
than I'y. Since only a few atoms will be in the electronic
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excited state, we can project the master equation onto
the subspace of N—-atom ground states and single atom
excitations. Using adiabatic elimination of the excited
electronic state we systematically derive a master equa-
tion for the diagonal part of the reduced density operator
of the ground state atoms (trap populations),
o0

(k + 1)(2AkpA}, —
k=0

p= Al Arp — pALAx)

SRS

_2t Z (k +1)(24LpAx, — AkAlp — pArAL), (3)

where Ay = glgk11, and Ty = T(nQ/2)%/[(Cn/2)*+ (v F
8)?]. Physically, Eq. (3) describes the situation when all
of the atoms are in the ground electronic states, but they
redistribute among different kth trap states with rates
of the order of 72Q2/T'y. Only the rates of transitions
from the kth to k + 1 level and back are nonzero, and
interestingly they depend explicitly on the populations of
the levels in question. In particular, for negative detuning
the system reaches a steady state of the canonical form

p= %e—ﬁzk kugzgk‘ (4)

with Z being the partition function, and
8=1/ksT = In(T_/T4)/v . (5)

For N = 1, the state (4) reduces to the result for the
single atom case [8]. Note that the temperature actu-
ally depends on the number of atoms and the atomic and
laser parameters. The detuning provides a simple control
parameter since the effective temperature is a monoton-
ically increasing function of §(< 0). On the other hand,
we find a dependence of the temperature on the number
of particles, which is a consequence of super-radiance.
Thus, for a given detuning, the temperature grows as
one increases the number of atoms in the trap.

The physical meaning of the master equation (3) is
readily discussed in the decorrelation appproximation,
valid in the thermodynamic limit (N — o). We in-
troduce mean level occupations ng(t) = (g,z(t)gk(t)) =
Tr[g,fc gk p(t)] and neglect their fluctuations, obtaining the
following equation:

g = (k+ 1)[T-ng+1(1 £ 1) — Dyne(l £ ngyr)]
—k[C_ng(l £ng—1) — Dyng_1(1 £ ng)], (6)

where the upper and lower signs refer to bosons and
fermions, respectively. Equation (6) describes the change
of population of level k due to transitions to and from
levels k + 1. This equation resembles the rate equation
of a single particle trapped in a harmonic potential [8];
however, in the present case the transition rates between
the levels of the harmonic oscillator are collective cool-
ing and heating rates which depend on the number of
particles in the particular level. For finite N the master
equation (3) can be interpreted as a jump process with
transition rates between the trap levels. This allows us
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to simulate the time-dependent dynamics of the system.
In contrast to the familiar Monte Carlo simulations in
statistical mechanics for the lattice models in thermody-
namic equilibrium [10], our simulation has an immediate
physical meaning since each of the jumps is associated
with an optical pumping transition and thus the emis-
sion of a fluorescence photon. The simulation gives us
not only the trap level distribution but also the photon
statistics of the emitted light.

Let us first consider the case of bosons. The prop-
erties of the stationary distribution (4) for finite N are
illustrated in Fig. 1. In Fig. 1(a) we plot the relative oc-
cupation of the ground state Ny/N as a function of the
detuning for N = 1,10, and 100 bosons. The curves were
obtained directly from Eq. (6), i.e., in the decorrelation
approximation, whereas the crosses denote the results of
numerical simulations. As we see, the decorrelation ap-
proximation is valid for N 2 10. When 'y < v and for
a given detuning, the relative occupation of the ground
state increases as one adds more particles to the trap.
This can also be seen in Fig. 1(b), which displays the
total number of atoms in the excited states versus N for
several values of the laser detuning. For a given detun-
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FIG. 1. (a) Relative occupation of the ground state as a
function of the detuning for N = 1,10, and 100 bosons, and
v = 100T". Solid lines correspond to the solution of the mas-
ter equation under the decorrelation approximation. Crosses
denote results obtained from Monte Carlo simulations. (b)
Occupation of the excited trap states as a function of the num-
ber of atoms N for v = 100, and § = —25I" (crosses) and
6 = —40T (circles). The results were obtained from Monte
Carlo simulations.

ing the number of atoms in the excited states remains
practically constant as N grows, provided 'y S v. This
indicates a macroscopic occupation of the ground state
(~ N). Note that in the one-dimensional model studied
here, there is no well defined transition point for BEC
[11]. This occurs for any value of the detuning. However,
when I'y 2 v, occupation of the excited levels starts to
increase dramatically due to an effective increase in the
temperature as a function of N via the rates I'y as ex-
pressed by Eq. (5).

For fermions, the steady state is a Fermi-Dirac dis-
tribution with the temperature as discussed above for
the case of bosons. For low temperatures (large nega-
tive detunings), atoms occupy the Fermi sea up to the
Fermi level (in 1D given by the number of atoms). As
the detuning increases, higher and higher levels become
populated.

In view of the difference between the stationary states
for bosons and fermions, one expects to detect these
differences when performing appropriate measurements
on the system. The most obvious of such measure-
ments is the detection of fluorescence photons emitted
by the atoms. Interestingly, the mean fluorescence in-
tensity does not depend on the statistical character of
the atoms, I = I'xn?Q?/8v|6|. This is readily under-
stood for low and high temperatures. For low temper-
atures the NV bosons are essentially in the trap ground
state and the transition rate to the first excited state
will be proportional to NT';; for fermions we have tran-
sitions of the atom at the edge of the Fermi sea between
level N — 1 and N which, according to Eq. (6), is again
proportional to NI'y. On the other hand, for high tem-
peratures the occupations of the trap levels are much
less than one, and the difference between bosons and
fermions disappears. However, the quantum statistics of
the atoms is reflected in the quantum fluctuation prop-
erties of the fluorescent light. In Fig. 2 we show this
behavior for » = 100I', N = 50 (a), and v = 5I'; N = 10
(b). For low and high temperatures (large and small de-
tunings), bosons and fermions behave in the same way.
Contrarily, there are significant differences both in the
waiting time (Fig. 2) and the photon counting distribu-
tions (Fig. 3). For bosons, the emitted photons tend to be
more bunched, so that the photon counting distribution
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FIG. 2. Mean square variance of the delay time 7 between

emission of two successive photons as a function of the detun-

ing for N = 50 and v = 100T (a), for N = 10 and v = 5T (b),
for bosons (solid lines) and fermions (dashed lines).
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FIG. 3. (a) Photon—counting distributions for N = 50
bosons, ¥ = 100", and § = —10T"; (b) same as (a) but for
fermions. The results were obtained from Monte Carlo sim-
ulations. The sampling time was taken as 4/I, where [ is
defined in the text.

is wider than that for fermions.

The observation of this behavior within the validity of
our model requires confinement of N = 10 to 100 atoms
in a volume A3. The tight binding of atoms in a parti-
cle trap required for the LDL can be realized with mi-
croscopic magneto—optical (rectified force) or magneto-
static traps with large magnetic field gradients, or with a
dipole trap [12]. In addition, the present calculations are
based on an independent particle model which assumes
that the interaction energies between the atoms are small
compared with the excitation energy in the trap. For
N < 10? atoms and a trap ground state of size A\ we
find that the trapping potential is not modified by inter-
atomic interactions for typical atomic parameters [13]. It
is straightforward to extend the model to include these
interactions within an “effective” (renormalized) single
particle trap potential. Our theory, which is one dimen-
sional, can be easily extended to the case of 2D and 3D.
Furthermore, one can study other laser configurations
with the same formalism.

To summarize, we have studied the relation between
quantum statistics and laser cooling dynamics of atoms
in a small trap. The model we present is exactly solv-
able, and predicts a stationary state described by a Bose—
Einstein or a Fermi-Dirac distribution. The steady state
distribution has such a canonical form for any finite num-
ber of atoms, and does not require us to evoke the ther-
modynamical limit. The laser detuning is the control pa-
rameter of the system, and plays a role analogous to the
temperature. In contrast to the standard canonical parti-
tion function, the temperature depends also on the num-
ber of atoms, as a consquence of super-radiance. The in-
tensity of the fluorescence photons emitted by bosons and
fermions is the same for any detuning (i.e., temperature).
On the other hand, correlations between emitted pho-
tons are different and characterize the quantum statisti-
cal nature of the particles in the trap. Finally, we have
investigated other cooling schemes and atomic ground-
ground and excited-ground state interactions. We have
found, for sufficiently high densities, deviations of the
equilibrium distributions from the standard BED and
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FDD which display novel phase transitions [14].
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