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Novel Polarization Dependence in DifFusing-Wave Spectroscopy of Crystallizing
Colloidal Suspensions
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We report an unexpected behavior of the intensity autocorrelation functions Cvv (t) (polarized)
and CHH(t) (depolarized) of multiply scattered light from dense colloidal polyball crystals under
certain conditions. We find that Cvv(t) saturates at large times as expected for a frozen phase,
while CHH(t) decays to zero in a short time as in a fluid. We present a new phenomenological
model for this behavior based on decoupled translational and orientational fluctuations in a weakly
depolarizing medium. Our study highlights the greater sensitivity of depolarized diffusing-wave
spectroscopy as a probe of the dynamics of the medium.

PACS numbers: 82.70.Dd, 66.20.+d

The recently developed technique of diffusing-wave
spectroscopy (DWS) [1—4) has made it possible to use
light-scattering methods [5] to study the nature of dy-
namic correlations even in media such as concentrated
colloidal suspensions [3,4] and foams [6], in which the
light is highly multiple scattered. Most DWS studies of
colloidal suspensions have focused on the liquid rather
than the crystalline phase and the question of polariza-
tion dependence in particular has been looked at [7,8]
only in the liquid phase.

In this Letter, we report a striking and altogether unex-
pected polarization dependence of the DWS signal from
colloidal crystals under certain conditions, and present
a theoretical model which rationalizes our observations.
Briefiy, we find that for a nominally (poly)crystalline col-
loidal suspension, the time correlation of the depolarized
part of the multiply scattered electric field decays to zero
as in a liquid while that of the polarized part is nonde-
caying as expected of a solid phase. For samples aged
for several weeks, however, the depolarized signal also
becomes nondecaying.

In conventional quasielastic single light scattering
(QELS) [5], the temporal autocorrelation Gi(t) of the
scattered electric field from a system of noninteracting,
difFusing particles decays as e '/ ' with r, = (Dpq )
where Dp is the self-difFusion coefficient of the particles,
q =

& sin(8/2) is the scattering wave vector, 8 the scat-
tering angle, and Ar, the wavelength (in the scattering
medium) of the light used. In DWS, however, the av-
eraging over photon paths and q yields [1,9], for the
near backscattering direction, Gi(t) oc exp[ —p(6t/rp) '/

]
where rp ——(Dpk2), with k = 27r/AL, . The param-
eter p depends on the polarization of the scattered light
and on the ratio l, /l of the transport mean free path l,
(the mean path length required to randomize the prop-
agation direction) to the scattering mean free path l
(the mean distance between successive scattering events).
For the case of interacting particles, it has been shown
that [7], with some simplifying assumptions, Gi(t) oc

exp[—7(6kp2W(t)}i/2] where W(t) is the mean square

displacement of a particle in time t.
We note that with vertically polarized incident light

while both Cvv(t)—: (Iv(t)Iv(0)) / (Iv) —1 and

CH H (t)—:(I~(t)IH (0)) / (IH ) —1 respond to transla-
tional motion [7,8], only CHH is sensitive to changes in
the local dielectric anisotropy and hence contains infor-
mation about the correlations of orientational fiuctua-
tions as well.

We use samples of 0.115 pm diameter charged
polystyrene spheres (Seradyn, U.S.A. ) in water, with vol-
ume fraction P = 0.03, contained in a cylindrical quartz
cell of 8 mm diameter with a mixed bed of ion-exchange
resins at the bottom of the cell to reduce the ionic impu-
rity. Light from Kr+ laser (AL, = 647.1 nm) is scattered
at 8 = 165' and the normalized intensity autocorrela-
tion Gz(t) [= Cvv(t) or CH&(t)] is measured using a
Malvern correlator (model 7032CE). Gi(t) is extracted
using G2(t) = f ~Gt(t)~, where constant f is determined
by the system optics.

Our observations are summarized in Figs. 1 and 2. The
inset of Fig. 1 shows the fluid phase Gz(t-) before adding
resins, which fitted well to the form f exp[ —2p(6t/rp) t/2]

with rp = 1.8086 msec and p = 1.89 for Cvv and 2.87
for CHH. The value of Dp taken for estimating 7p via
Stokes's law corrected for the hydrodynamic interaction
[10] is Dp = (ksT/6rrrla) (1 —1.8$) where rl is the vis-
cosity of water ( = 0.01089 P) and a the radius of the
particles (= 0.0577 pm) determined from QELS exper-
iments. That this behavior is entirely consistent with
expectations and, in particular, that f is very close to its
ideal value of unity (fvv = 0.99 and fHH = 1.06), re-
flects the high quality of our data and gives us confidence
in our surprising new results.

The remarkable main graphs of Fig. 1 correspond to
a microcrystalline suspension, confirmed by its Bragg-
iridescence, obtained by waiting for about 120 h after
adding resins. The measurements apply to a region 5 mm
above the top of the resin bed. We see that while Cv~
decays to a nonzero constant, as expected for a frozen
phase, CH~ decays to zero at essentially the same rate
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FIG. 1. The polarized (VV) and depolarized (HH) inten-

sity autocorrelation functions Gz(t) (while freezing) versus

(t/ro) (the labels time and ensemble averaged are explained
in the text). Inset shows Gz(t) in the liquid state (circles),
before adding resins, their fits (straight lines), and the decay
of the depolarized "ensemble averaged" Gz(t) in the frozen
state (solid line).

as in the liquid (the inset). transmission measurements
done in the same state also show a nondecaying C~~,
implying that the sample is throughout in a state of ar-
rested translation motion (nominally solid).

Since the system is in a frozen but disordered (i.e. , non-

ergodic) state, we have averaged the correlation functions
obtained from ten spatially separated regions in the sus-

pension. The curves so obtained are labeled "ensemble
averaged" in Fig. 1, while those from a single region are
called "time averaged. "

Furthermore, after about 7 weeks CHH also eventually
acquires the time-persistent piece expected of a crystal
or a glass [see Fig. 2(a)]. Lastly, if we reverse the experi-
ment by adding ionic impurities to a well-formed colloidal
crystal (with nondecaying Cv v and CHH) the resulting
states for two values of impurity concentration are shown
in Fig. 2. In Fig. 2(b), we see clearly the extraordinary
intermediate state earlier observed in the freezing stud-
ies, and in Fig. 2(c), we find again ordinary liquidlike
behavior. If we assume that the intermediate state is an
imperfect crystal of some kind, clearly the HH correla-
tions are more sensitive to the type of disorder present.

We attempt to understand these results through a
model which is also of interest as a new treatment of
waves in random media. We work in the limit Al. )
aP i~ () a), unlike the usual treatments, which are for

Ai, « aP ) s. In our case, several particles are contained
within a (wavelength)s, so that the local, instantaneous
dielectric tensor (a) is anisotropic and (b) can be treated
as a smoothly varying field, i.e. ,

E,~(r, t) = Eo [1+5(r,t)] 6,, + Epg,~(r, t),

"0 '.:
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FIG. 2. Results of the melting experiment on the same

sample as in Fig, 1 at 12 mm above the resin bed about
7 weeks after adding ion-exchange resins. (a) Both VV and

HH correlations are nondecaying in the well-formed iridescent
crystalline sample. (b) With an addition of 40 microequiva-

lents/1 of HC1 in the sample (which still remains iridescent).
the unexpected simultaneous existence of a nondecaying Cq y

and a liquidlike decaying CHH, as seen in Fig. 1, is repeated.

(c) An addition of 400 microequivalents/1 of HC1 melts the

sample to liquid in the region probed.

where EoZ' and Eo g are the local fluctuations in the
isotropic and anisotropic parts, respectively, of e,~, and

Eo is the average dielectric constant of the medium which

is isotropic. We assume that the randomization of the
direction of propagation, and hence the diffusion paths

followed by the light, are determined by 1, with g (« 7)
serving only to disorient the polarization. As is usual in

weak-scattering treatments of DWS [11],we ignore the
interference between the scattered electric fields due to
distinct paths.

Along each of the random-walk paths R(s) (where s

is the path parameter) traced by the light, we assume

that, apart from the effect of g. the polarization vec-

tor is "Fermi transported, " i.e. , rotates at a rate equal
to minus the torsion [12]. We therefore use a mov-

ing [13] coordinate system along each path, with the

z, y, and x axes being, respectively, the unit tangent

(~&~/
] &, ])—:t(s), unit normal &,, /] &, [= n(s), and

binormal b(s) = n(s) x t(s). We need only to keep track

of the projection of A,~- into the b-n plane. The dephas-

ing due to 2'(r, t) affects both Cv ir and CHH in the same

way as would be seen by MacKintosh and 3ohn's treat-
ment [7], and cannot therefore explain our observations.

We begin with the wave equation for E (r, t), the wth

Fourier component of the electric field, with the usual

assumption that the time dependence in F,„(r,t) is purely
because the medium is changing in time:
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—(V'+ kp') E = k,' g (r, t) + Z'(r, t) E,
where kp = u~eq/c; c is the speed of light in sacuo .Suit-

able statistical properties for 2' and g will be introduced
later. Along a path R(s), the electric field then evolves
with s, according to

kpz g (R(s), t) I»' «~(s) ) ' ' «~(s) )

and let

Then

~(s) =-kp

2
kp

1(s) =
2

ap(s') sin 28(s')ds',

ap(s') cos 28(s')ds'

(
ei~(s}~. Jl

EJ ) fg ) (8)

+ kp [X(R(s),t) + 1] i @ ( )

& &ll(s) l

where [[ and J are directions along and perpendicular
to the parallel-transported polarization, respectively, and
we have suppressed the subscript ~. Since we are con-

P

cerned only with the part of g that acts in the b-n plane,
we can model it by a random symmetric traceless tensor
in two dimensions:

A,~
= ap(N, N~ —zib, ~), (4)

where Ãi = Ãi(R(s), t) is the local, instantaneous, axis
of anisotropy of the projection into the b-n plane of the
dielectric tensor and ap = ap(R(s), t) is the overall am-
plitude of the anisotropic local fluctuations.

For ap = 0, to lowest order in 2'(s), E(s)
I s

e'~ ' '
E(0), where k(s) = kpgl+Z'(s). For ap g 0,

it is still useful to separate the effects of 2 from those of

g by defining

g( )
-i J |:(s'}ds'E(

)

where the s evolution of 8 is governed purely by g. Equa-
tion (3) then yields

. c} ( Zll(s) &

kp f cos28(s) sin28(s) l ( fll(s)
4 [q sin28(s) —cos28(s) ) q Z~(s) ) '

(6)
82where terms of order , , have been dropped in a "forward

propagating wave" approximation [14], valid for ap and
8 varying slowly on the scale of AL, . Here 8 is the angle
between N and n.

Ignoring for the moment the actual time dependence
of 8 and ap, we see that for each path R(s), Eq. (6)
is the Schrodinger equation for a quantum spin-& state
with Hamiltonian 'N = err h(s—) in a magnetic field

h(s) = kpap(s)(sin28(s), 0, cos28(s)), lying in the x-z
plane and fluctuating with respect to the "time" s.

Ket us work in the "interaction picture, " treating the
o term as the interaction. This choice is motivated by
the fact that the initial state is an eigenstate of o, We
define

, ' ''jl' = "'"')s;.28(s)
Bs (~J. )

(
—iq(s}rz, sic(s}sg

) i
(9)

Of course, we cannot solve Eq. (9) exactly either since
'H does not commute with itself at difFerent "times" s, so
that the solution involves a "time-ordered" exponential.
We, however, solve the problem only in the approxima-
tion where the consequent interference between the spin-
flip and non-spin-flip terms is neglected. This is reason-
able since the coeflicients of cr and cr, involve sin 28(s)
and cos 28(s), respectively, and these are expected to be
statistically orthogonal. Then, Eq. (9) becomes

i
I

—Jl
I

= —ap(s) sin 28(s)cr,
~

Jl, 8 (E i kp . (E
» (Zg) 2

(10)

Solving Eq (10) .(which is trivial) we see that

~

= [cos P(s, t) + i sin P(s, t)o, ] i

( Sjl(s, t) '} . . ( Zjl(0, t) 5

(6'gs, t ) * qf~0t )
'

(»)
We approximate apsin28 and apcos28 by mutually

uncorrelated Gaussian random noise sources, with zero
mean, and with covariances

—(ap(s, t) sin 28(s, t)ap (0, 0) sin 28(0, 0))
k2

= Sb(s)e '~ " (12)
kpz—(ap(s, t) cos 28(s, t)ap(0, 0) cos 28(0, 0))

= Cb(s)e '~ ' (13)

—(ap(s, t) cos 28(s, t)ap(0, 0) sin 28(0, 0)) = 0. (14)
kp~

This amounts to assuming a local optical axis uncorre-
lated in space and weakly correlated in time, which is

reasonable for a system without significant quadrupolar
orientational correlations.

In the reference frame in which Eq. (3) is written, the
initial condition is

Zll (0, t) = Ep and E~ (0, t) = 0. We can

then solve for
~

—
'

~

and transform back using Eq. (8)
~Xi(s,i}}'
(s| (s,t})

to get & (,',} . Using Eq. (14) to decouple the correla-
E'][ (s,t)
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2
0 C—s+Cse '~ "I —Ss ~ Sse " & —Sse '~ A

)2
~e —e

For t &) ~l, 7.~, we see that

while

Cvv(t) , @2 —I'S+C)8 (17)

CHH(t) , F2g~e —(s+c)s —t/7. gse e (18)

The measured correlation functions are, of course,
Cvv =[ Cvv [

and CHH =[ CHH [
. To claim that the

observed lab frame Cvv and CHH correspond to those we
have calculated requires that in the absence of anisotropic
fluctuations, the output and incident polarizations are
nearly parallel. This would be exact only if the multiple
scattering were confined to a plane perpendicular to the
incident polarization. Inasmuch as the observed output
scattered intensities are in the ratio I 3, our approx-
imation is not too bad. With this preamble, we return to
Eqs. (15)—(18), whence we see clearly that the effect of
decorrelated orientational fluctuations is to cause CHH
to decay, while leaving Cvv unaffected. More precisely,
the ratio CHH/Cvv decays as e 'L'~ for w && rg, inde-

pendent of t/~q. Thus, if other dynamic fluctuations of
a purely translational type are frozen, then weak orien-
tational fluctuations can decorrelate CHH in preference
to Cvv. Of course, we must average over a suitable dis-

tribution of path lengths P(s), but the result that CHH
decays while Cvv does not is unchanged.

It is appropriate to remark at this point on the re-

lation between our approach and that of MacKintosh
and John [7]. Note that for short times t ( ~~, 7.I, the
overall time dependence of the correlation functions is

of the form e ~' ""~"/ '. This, when averaged using
f2

P(s) oc exp[ —(const) —;],for backscattering, will give de-

cays which are exponential in Qt Such a restr.iction to
"short" times is implicit in [7] [see their Eqs. (3.11)—
(3.12)].

Our conjecture for the underlying origin of these fluctu-
ations is as follows. Our system, in the imperfectly crys-
tallized regime contains some anisotropic entities, per-
haps interfaces between fcc- or bcc-symmetric (and hence
optically isotropic) crystallites for which quadrupolar or
higher shape fluctuations cost little energy and therefore

tions of p and P, we find that the correlation functions
of the electric f'teld components along and perpendicular
to the Fermi-transported initial polarization are, respec-
tively,

2~S I~i 0 —Cs+Cse '~ I —Ss i Sse '~ A —Sse '~"A
)2

e +e

(15)

contribute appreciably mainly to depolarized scattering
and to the decay of HB correlations. If these defects
were absent, all depolarization would contribute identi-
cally to C~~ and CHH, and both auld saturate, but in
their presence, the mechanism outlined above can act to
give the startling difference between C~y~ and CH~. As
time goes on. because of either the growth of the crystal-
lites, or the annealing and "hardening" of the interfacial
regions (or both), this anomalous scattering mechanism
freezes out. This leaves only the translational motions
of the colloidal particles, which dephase Cp~ and CHH
in essentially the same way. A small-angle x-ray or neu-
tron scattering study could tell us more about the state
of order of the colloidal suspension in the various stages
of crystallization, and allow us to refine our model of the
medium. Pending such a study, we must content our-
selves with pointing out this unusual and perhaps uni-
versal transient property of light multiply scattered from
crystallizing colloidal suspensions.
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