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Tracking Unstable Periodic Orbits in the Belousov-Zhabotinsky Reaction
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An;id;iptive control algoritbm for tracking unstable periodic orbits is presented. Automatic tracking
i» m ide possible by incorporating a stability-analysis subroutine into a map-based control scheme. The
method is used to tr;ick unst;ible orbits in the Belousov-Zhabotinsky reaction.

PACS numbers: 82.40.Bj, 05.45.+b

Dynamical systems are typically characterized by sys-
tematic measurements of their asymptotic behavior as
a function of a system parameter. The resulting con-
straint-response diagram provides insights into the
system's bifurcation structure, i.e., the bifurcations that
underlie the changes in qualitative dynamical behavior
[1]. Successively varying other system parameters gen-
erates additional bifurcation diagrams, allowing the con-
struction of phase diagrams of the behavior. Such mea-
surements provide information about the stable states of
a system. If an accurate model exists, a more detailed
picture of' the dynamics —including information about the
iinsIable states —can be developed through the use of
continuation methods [2].

A diferent approach for characterizing dynamical sys-
tems has become possible with newly developed tech-
niques for stabilizing unstable periodic orbits in experi-
ment;tl systems, such as the Ott-Grebogi-Yorke (OGY)
method [3,4] and related map-based schemes [5-7].
These control algorithms permit the stabilization of un-

stable states without relying on model descriptions. By
tracking the unstable states and combining the measure-
ments with measurements of the stable states, features of
the bifurcation structure of a system can be determined
before any modeling studies are carried out.

The ftrst experiments on tracking unstable states were
carried out using electronic and laser systems. Carroll et
al. [8] reported tracking unstable periodic orbits in a
chaotic Dulling circuit, and Gills et al. [9] reported track-
ing unstable stationary states in a chaotic multimode
laser in which the range of stable lasing was significantly
extended.

We present a new tracking algorithm, which deter-
mines the stability properties as well as the location of the
unstable states. Automatic tracking is made possible by
incorporating a stability-analysis subroutine into a map-
based control scheme [5,6]. The procedure is tested in an

experimental setting by tracking unstable periodic orbits
in the Belousov-Zhabotinsky (BZ) reaction as a laborato-
ry control parameter is varied. The experimental
methods of previous control experiments, where periodic
orbits were targeted and stabilized within the chaotic re-
gime ol the BZ reaction [10], serve as the basis for the
tracking experiments reported here.

Tracking procedures oAer new possibilities for control

Sp =Z, [X„—X,(p) l,
where the proportionality factor,

Ao=
(~ —1)eX,/ap

'

(3)

and characterization of dynamical systems. As in previ-
ous control methods [3-7], only tiny perturbations are
necessary to stabilize a particular unstable state; hence,
the states are representative of the original autonomous
system. Tracking allows the stabilization of unstable
states outside the chaotic regime, as a particular state can
be fol lowed th rough a complete bi fu rcat ion sequence—from the point where it becomes unstable to the point
where it regains stability. In addition, as an unstable
periodic orbit is tracked the Floquet multiplier (in the un-

stable direction) can be automatically determined by the
stability-analysis subroutine described below.

The map-based control method is appropriate for sta-
bilizing periodic orbits in low-dimensional, highly dissipa-
tive chaotic systems [5,6]. Rather than targeting the
stable manifold of the fixed point in the Poincare section
as in the OGY algorithm [3,4], the method is based on

targeting the fixed point directly in the 1D return map.
For systems described by eA'ectively 1D maps, the behav-
ior in the local vicinity of a fixed point obeys linear dy-
namics according to the map

X„+(—X(X„XF)+XF,—

where X„ is the value of the measured observable on the
nth iteration, XF is the fixed point, and X is its Floquet
multiplier. We assume there is an experimentally acces-
sible parameter, p, which alters the dynamics in such a
way that the fixed point moves in the direction of the un-

stable manifold when a small perturbation, Bp, is applied.
Following the application of such a perturbation, the sys-
tem evolves according to the position of the shifted fixed
point,

8XF
Xt-(p+ 8p) =XF(p) + Sp . (2)

tip
A particular unstable fixed point, XF, is stabilized by

determining the perturbation Bp such that the next re-
turn, X„+~(p+bp), is equal to XF(p). The appropriate
Bp is simply proportional to the deviation of the system
from XF,
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is determined in advance from the horizontal shift of the
return map resulting from the perturbation 6p [5]. Per-
fect control would occur —if there were no measurement
or targeting errors —with all L near LF mapping to LF,
and the system in the local region of LF would be de-
scribed by a new map of zero slope [6].

Control is also possible for other values of the propor-
tionality constant, K~. For any value of K~ applied dur-
ing control, the system evolves within tke linear region of
LF according to

X„+i
=S(X„XF)—+XF,

~here the local slope S of tke new map is related to K~
by

p

Thus, the fixed point is stabilized for any Kq that pro-
duces a slope S with magnitude less than unity, or, con-
versely, the multiplier 5 of the fixed point under control
can be set to any value by the appropriate choice of K~.
This relationship allows the values of S, Kq, and A, to be
determined while the unstable fixed point remains under
control.

It is first necessary to initialize the tracking procedure,
i.e., locate and stabilize a desired unstable orbit at some
value of the bifurcation parameter q. (We distinguish be-
tween the control parameter p and bifurcation parameter

q because they need not be the same. ) The starting point
can be located either in the vicinity of a bifurcation that
destabilizes the periodic orbit, or in chaos, where the evo-

lution of the system ensures that the local vicinity of the
fixed point will be visited. In both cases, the location of
the fixed point and value of the Floquet multiplier can be
readily determined.

Tracking LF through changes in the bifurcation pa-
rameter requires adaptive control, ~here the values of LF
and Ko must be redetermined without the system leaving
the local vicinity of XF (where the control algorithm is

effective). The control algorithm is continuously applied
throughout the change in q in order to maintain control.
Provided the change from q to q'=q+Bq is su%ciently
small, the new LF and A, are close to the previous values
and linear behavior around the fixed point can be as-
sumed. The value Ko(q) and XF(q) used in the previous

step, however, will be incorrect for convergence to the
new XF(q'). Consider the effect of using Ko(q) and

XF(q) in Eq. (3) for the system at q'. With these values,
the system will converge to a point that is distinct from
both the old XF(q) and the new XF(q'). lt can be shown
that if the convergence is to the value X*(q'), the value
of XF(q') is given by

X*(q') —X(q)XF (q)
1
—X(q)

where the values of XF(q) and l(q) are known from the
previous step.

With the new fiixed point known, the next step is to
determine the appropriate value Of' the proportionality
constant 1'or the control algorithm, Ko(q'), and the new

multiplier, ),(q'). One could determine the value of i. by
switching oA control and simply;illowing the system to
diverge; in experimental settings, however, this approach
often fails because the system leaves the linear region oI
the fixed point too quickly, especially for highly unstable
orbits. A systematic method for determining the new Ko
,hand ), utilizes the relationship given by Eq. (6). The pro-
portionality constant K~ is first set to a value. K], that
will produce a slightly unstable fixed point, e.g. , »'ith

~S~ = 1.5. The divergence from XF is mild, allowing
enough returns to the section for an accurate determina-
tion of the slope Si. Before tke system has diverged
beyond the linear control range, K~ is changed to a ne»
value, K2, which corresponds to a mildly stable fixed
point, e.g. , with ~S~ =0.6. The system will slowly con-
verge back to LF and the slope„S2, is determined. The
experimental measurements during the divergence/con-
vergence scheme are then used with Eqs. (4) and (6) tu

yield

SpK] —S]Kp
Ko

S2 —S]
and

S2Ki —S]K2
K] —K.

These steps, redetermining Lq and finding the corre-
sponding values Ko and k from tke stability analysis, can
be reiterated in each step of the tracking until satisfacto™
ry convergence is achieved.

We now demonstrate the tracking algorithm with

the Belousov-Zhabotinsky reaction in a continuous-flow,
stirred tank reactor (CSTR). This system displays a

variety of dynamical responses, including period-doubling
cascades to chaos [11] and complex mixtures of mixed-
mode oscillations and chaos [12,131. The procedure will

first be illustrated with the Gyorgyi-Field [14] model of

the BZ reaction, with the parameters similar to those
used in the experimental system. A typical bifurcation
diagram of this model is shown in Fig. 1(a), where .~

period-doubling sequence from period- 1 oscillations to
chaos is followed by the reverse sequence to simple period
I. The period-1 orbit loses stability at the first period-
doubling bifurcation; the locus of the unstable orbit, how-

ever, is readily determined by the tracking procedure.
The open circles show the location of the stabilized orbit
at each incremental increase in the bifurcation parameter

q (the reciprocal residence time). The corresponding
locus, shown by the solid line, was determined by the
path-following algorithm AUTO [2]. The Floquet multi-

plier for the period-1 orbit, calculated from Eq. (9), is

shown as a function of q by the open circles in Fig. 1(b).
The values calculated from AUTO are shown by the solid
1 ine.
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FIG. 1. Period-doubling sequence calculated from the
three-variable Gyorgyi-Field [14] model of the Belousov-

Zhabotinsky reaction. (a) Bifurcation diagram showing max-

imum in oscillations {0)of variable X=loglp([Ce{IV)]g) as a

function of the bifurcation parameter q I/10 r, where g is a

scaling constant and ~ is the residence time. The open circles
show the locus of the unstable period-I orbit. (b) Values of
period-1 Floquet multiplier as a function of q. The parameters
used in the calculation are the same as in Ref. [14] except
[malonic acid] =0.26M.

Each step of the tracking consisted of determining the

new fixed point according to Eq. (7) followed by the sta-

bility analysis according to Eqs. (8) and (9). An example

of the stability analysis for one step of the tracking in

Fig. 1 is shown in Fig. 2. The value of K is first set to K|
to generate a slope Si = —1.5, and the system diverges

away from the fixed point (values 1,2, 3, . . . ). After

sampling 5 points, the value of K is changed to K2 to

give a slope S2= —0.6. The system converges back to
the fixed point, generating another 5 points (values

a, b, c, . . . ). Least-squares fits of each set of points allow

the accurate determination of the slopes, Si = —1.55'7

and Sq= —0.6571, which are then used in Eqs. (8) and

(9) to calculate values of Kp and 11, corresponding to the

value of the bifurcation parameter q. The updated Ko
and k are used in the next step of the tracking in deter-

mining the new value of LF.
An application of the tracking algorithm to the experi-

mental system is shown in Fig. 3. The BZ reaction was

carried out in a continuous-flow, stirred tank reactor
(volume=60. 0 ml, stirring rate=2700 rpm) maintained at

28.0 ~ 0.1'C. Two computer-regulated syringe pumps
were used, with malonic acid solution delivered by one

and cerium and bromate solutions (acidified with sulfuric
acid) delivered by the other. The period-1 orbit was

tracked from q =0.452 through the period-doubling,
chaos, and period-halving sequences to q =0.422. The
tracking was automatically carried out by a laboratory
computer —collecting the data, executing the algorithm,
and controlling the pumps. The period-doubling se-

FIG. 2. Return map showing linear dynamics under control
for two diflerent values of K in the vicinity of the period-1 fixed

point. The proportionality constant was first set to K i

=8.369&10 and then to K2=1,460x ) 0 . The correspond-
ing values of Si and S2 in Eqs. {8) and (9) yield the values

Ko =1.915& 10 and A,
= —2.766 for the tracking step at

q =3.5 in Fig. l.

quence to chaos and the reverse sequence are similar to
the calculated sequences in Fig. 1; however, some qualita-
tive differences are apparent. These are mainly due to
monitoring a different system variable and using a slight-

ly different bifurcation parameter in the experiments.
The potential of a bromide selective electrode, giving the
effective bromide ion concentration, was used to monitor
the system. The bifurcation parameter q was the flow
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FIG. 3. Stable states {0)and tracked unstable period-1 orbit
(0) of the BZ reaction as a function of bifurcation parameter q.
The variable X =logip[Br ] on crossing a Poincare section
defined by X= —5.66 in the Xt, Xti, phase plane (r =12 s).
Feedstream concentrations (before mixing) and flow rates:
[malonic acid] =0.222M at 0.444 mL/min; [Ce2{SO4)3] 4.50
x10 M, [NaBr03] =0.102M, and [HqSO4] =0.300M varied

at q mL/min.
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FIG 4. Stable states (+) and tracked unstable period-2 orbit
(o) in the BZ reaction. The monitored variable X and the bi-
furcation parameter q are the same as in Fig. 3 except the con-
stant IIow rate of the malonic acid solution was 0.440 mL/min.

the eigenvalue. The exponential growth ot'.Y'(r) is modu-

lated by sinusoidal oscillations, where the minima and
maxima in X are equally spaced in time by hi =njro.
The appearance of the extrema in the linear region of .4'

is subject to the recursion Iav

~~ here 4 + [ and, -][; are the successive v &lues and
= —exp(anjco). The linear dynamics of the system nc.tr
the stationary state can theref'ore be represented by a 1 o
snap and the tracking algorithm can be easily applied.
We report elsewhere [151 on stabilizing steady flame
fronts through the chaotic regime of laminar combustion.
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rate of the Ce(l I I), bromate, and sulfuric acid feed
streams (with the malonic acid flow rate held constant)
[10]. The reactor residence time served as the perturba-
tion parameter p.

Perturbations were applied during the first 25 s of each
—100 s cycle to stabilize and track the period-1 orbit,
shown in Fig. 3(a) by the open circles. The experimen-
tally determined values for the period-1 Floquet multi-

plier as a function of q are shown in Fig. 3(b). Although
there is significant scatter in the values of k due to experi-
mental fluctuations (from flow rate variations, etc. ), the
qualitative features of the dependence on q are similar to
the modeling calculations shown in Fig. 1(b).

Figure 4 shows an example of tracking period 2

through a period-doubling cascade that gives rise to 2: l

mixed-mode oscillations (two large amplitude and one

small amplitude oscillations per cycle [12,13]). Period-2
oscillations were stabilized after the period-doubling bi-

furcation at q =0.419 and tracked through chaos and the
mixed-mode oscillations to q =0.433. The stabilization
algorithm was robust and most effective when the pertur-
bation was applied 80 s after crossing the Poincare sec-
tion, with a duration of 40 s, or about & of the period.

The simplicity of map-based control methods offers
significant advantages for the implementation of eScient
tracking schemes. Linear map dynamics can also be used

to stabilize and track stationary states. The temporal
evolution of a two-variable system in the local vicinity of
a focus stationary state is described by

X(t) =XF+C exp(at ) sin (rat+san),

where a is the real part and m is the imaginary part of
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