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Novel Edge Excitations of Two-Dimensional Electron Liquid in a Magnetic Field
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We investigate the low-energy spectrum of excitations of a compressible electron liquid in a strong
magnetic field. These excitations are localized at the periphery of the system. The analysis of a
realistic model of a smooth edge yields new branches of acoustic excitation spectrum in addition
to the well known edge magnetoplasmon mode. The velocities are found and the observability
conditions are established for the new modes.

PACS numbers: 71.45.Gm, 73.20.Mf

The dispersion relation for plasmons in a nonrestricted
two-dimensional (2D) electron liquid is well known to
have a form io oc ki/~ [1—3]. If the liquid has a boundary,
an edge mode appears in addition to these bulk excita-
tions. The spectra of the edge and bulk modes differ
from each other only by a numerical factor [4]. A mag-
netic field applied perpendicularly to the plane of the liq-
uid changes the plasmon spectrum drastically. The spec-
trum of the bulk mode acquires a gap of the width equal
to the cyclotron frequency uI, . The only known gapless
mode existing in the presence of the magnetic field prop-
agates along the boundary [4—7). The "chirality" of this
edge magnetoplasmon determined by the direction of the
magnetic field (i.e. , by the sign of the Hall conductiv-
ity cr») was demonstrated explicitly in the time-domain
experiments [8].

The solved theoretical models of the edge modes as-
sumed a sharp electron density profile at the boundary

[4—7]; i.e. , the width of the boundary strip was assumed
to be infinitesimal. The existence of only a single branch
of the edge magnetoplasmons follows directly from this
assumption. For a realistic shape of a potential confin-

ing the electron liquid, the density profile is smooth at
the boundary [9—11]. The results of Refs. [4—7] can be
extended on this case only under the assumption that
the current and charge oscillations forming the magne-
toplasmon wave are homogeneous across the boundary
strip. However, the latter condition is excessively restric-
tive We dem. onstrate in this paper the existence of other
soundlike modes propagating along the edge. The cur-
rent for each of these modes alternates across the bound-
ary strip, and therefore the new branches could not be

predicted on the basis of a "sharp" boundary model.
Below we present an exactly solvable model correctly

describing all the edge excitations in the strong magnetic
field limit. We obtain also the values of the oscillator
strengths and the damping of these modes. The new
branches become robust and are not destroyed by a finite
relaxation time in the achievable region of relatively short
wavelengths.

The dynamics of the compressible electron liquid is
governed by the Euler equation and the continuity equa-
tion linearized in the velocity of the liquid v (p, t) and
in the deviation of the concentration 6n(p, t) from its
equilibrium value no (p):

e+~, (z x e) — Vo d p, =0,e, 6n(p, )
sm '

Ip —p I

6n+ Vo (no@) = 0. (2)

Here p is radius vector in the plane X-Y of the 2D elec-
tron liquid, z is the unit vector along the Z axis, and s
is the dielectric constant. The last term in (1) represents
the Coulomb interaction [12].

In the following we assume that the electron liquid is
homogeneous in the y direction and occupies half plane
x ) 0. Since the system is translationally invariant in
the y direction, we will seek the solution of Eqs. (1) and

(2) in the form

ti = exp (iky —iieet) m(x),
6'n(x, y) = exp (iky —iieet) f(x)

Substituting Eqs. (3) into the system (1) and (2) and

I

eliminating m(x), we find an integral equation for f(x):

2t- 2 d I d k
(~, —io ) f + k no —no 2

—no —+ —iocno &o (Ikllx»l) f(xi)dxi ——0,
EPl dx dx (4)

where no = dno/dx and Ao(x) is the modified Bessel
function. The homogeneous equation (4) comprises the
eigenvalue problem that determines the spectrum of edge
excitations id' (k). The spectrum is controlled by the pa-
rameters of the problem, by the magnetic field deter-
mining io„and by the concentration profile no(x). The

t latter depends on a particular type of the confining po-
tential [9,11]. We are interested in the low-frequency,
long-wavelength modes, and this allows us to neglect the
terms proportional to sr~ and k~ in Eq. (4).

Futher simplifications are possible in the case of a
strong magnetic field. Keeping only the terms propor-
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tional to ~, and ~„and introducing a new function
—1/2

instead of f(x), we find from (4) the following reduced
equation:

(5)

g(x) = A
1 BAO dflp

&p (Ikllz —» I) = a(»)dzl (6)
?l dx

2 AC
k.

A em(u,

Here n = np(x ~ oo) is the density of the homogeneous
electron liquid far from the boundary. One can estimate
from Eqs. (6) and (7) the typical value of Ice/kl to be of
the order of nez/ma, . It follows also from (5) and (6)
that the charge distribution f(x) in the wave is local-
ized mainly within the region where dnp/dx is large, i.e.,
within the boundary strip of width a. Now we can es-
tablish the validity criterion of the strong magnetic field
approximation. The neglected terms cc n/a in Eq. (4)
are smaller than the main terms oc mu2/e~ if the condi-
tion

AC
(8)

orna
is satisfied. For realistic parameters of the 2D electron
system formed in a GaAs heterostructure [10], n 1/azz
and a 10ag, the latter condition is equivalent to a
rather weak restriction on the filling factor, v & 10 (here
a~ is the Bohr radius for GaAs). The opposite case of a
weak magnetic field was considered by Nazin and Shikin

[13] for the electron system above helium.
Equation (6) is the integral equation of Fredholm type.

Its kernel is symmetric and positively defined; hence, all
the eigenvalues A are real and positive. If one makes
an approximation Kp(lkllx —»I) = » (I/Ikul) leading
to the degeneracy of the kernel, then only a single finite
eigenvalue A exists. This eigenvalue corresponds to the
known magnetoplasmon mode [4]. The actual kernel in

(6) is nondegenerate, however, and thus there are many
edge modes.

The eigenvalue problem (6) cannot be solved analyt-
ically for an arbitrary distribution np(x). Below we

present a model for the density profile,

2-
np(x) = narctan—x&0,

g(x) =
(x)'&'(x + a)'&' .

' '
I, x + a ) 'g~ T2~ (10)

j=p

that allows a complete analytical solution of the problem.
This model describes correctly the asymptotic behavior
of the density formed by an electrostatic confinement,
reproducing the characteristic [9—ll] ~x singularity at
x~0.

The proposed model allows us to solve the eigenvalue
problem (6) using an expansion of g(x) in a form

where T„(()—:cos{narccos() are the Chebyshev poly-
nomials [14]. Substitution of {10) into {6) leads to the
following system of equations for coefFicients g~ of the
expansion:

1 e ~' {—1)"

2]kal

1 1 {—l)~
g~ — . g~ 2 . gp; i11 j

When deriving Eqs. (11), we used the approximation
Kp(kx) ln (2e ~/lkzl) which is valid in the long-
wavelength limit, Ikal « 1; here p = 0.577... is the Euler
constant. The system (11) leads directly to the following
transcendent equation for the eigenvalues:

1
—31

—+24(1 —A) = ln (12)2ka
Here 4(l —A) is the digamma function [14] that has sim-

ple poles at A = 1, 2, . . . . Because Ikal « 1, the solutions
of Eq. (12) are close to the points A = 0, 1, 2, . . . where the
left-hand side of this equation is singular. The smallest
root of Eq. (12) belongs to the region A « l. Expanding
the left-hand side of this equation in power series in A

and retaining only the two leading terms of the expan-
sion, we find the spectrum of the conventional [4] edge
magnetoplasmon mode:

~p(k) = —2ln
I „k.fe ne

(2 ka

Other roots A & 1 are close to the poles of the digamma
function in Eq. (12). It is these roots that determine the
new branches of the edge excitations with the acoustic
spectrum:

2ne'
~, (k) = s~k, s, =— . , j =1,2, . . . .

em~cg

The difference between the acoustic modes and the
"usual" plasmon (j =- 0) originates in the structure of
charge distributions associated with these waves. In the
usual plasmon wave, charge does not oscillate across the
boundary strip, whereas in the acoustic mode j charge
oscillates j + 1 times in the x direction (sm Fig. 1), the
average density being smaller by a factor of

Ij ln(lkal) I

(14)
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FIG. 1. Characteristic charge distributions for (a) the edge
magnetoplasmon mode, j = 0, and (b) the edge acoustic mode
with j = 2. Charge patterns shown in the figure Inove along
the y axis according to Eq. (3).
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vr k-
Saa(k) z ( i Fa(k)

mu), k
(17)

2
(F*=(k dx ——,g~ (, F"= dx —Og~

functions g~(x) here being normalized by the condition

dxgz(x) = l. (18)

It is obvious from Eq. (5) that F" is proportional to
the square of the average charge mode j bears. As was
mentioned already, this charge in the acoustic modes is
parametrically smaller than the one in the usual edge
magnetoplasmon mode. Therefore, the interaction of the
ae Geld polarized along the boundary with the acoustic

than the oscillations amplitude for each mode with j P 0.
The potential energies U~ produced by the charge dis-

tribution types depicted in Fig. 1 can be easily esti-
mated. For the same characteristic amplitudes of charge
density perturbation in all the waves, we Gnd the ratio
Uo/U~ = j(ln((ka()(. This explains the difFerence be-
tween the spectra (13) and (14), as energies U~ provide
the restoring forces for the modes. For the higher har-
monics j » 1 the latter considerations are obviously in-

dependent of the particular density profile (9) that allows

one to expect certain universality of the spectrum (14).
Indeed, for an arbitrary profile no(x), the function

may be used at j && 1 as an asymptotic solution of the
eigenvalue problem (6). In the case of the profile derived
in Ref. [9],we find the corrections to the velocities s~ [see
Eq. (14)] to be of the order of 1/j2.

The observability of the acoustic modes requires suf-

ficiently large oscillator strengths and rather slow decay
for these modes. To begin with, we evaluate the oscilla-
tor strengths S ~(k) for all the modes; here cr, P = x, y
denote the polarization of the applied ac electric field,
E~(y, t) = E~ exp(iky —iwt), and j = 0, 1,2, . . . is the
mode number. The power P absorbed from the ac field
within the unit length of the boundary is related to the
oscillator strengths of the difFerent modes by

eP—: Re noeE'd p2I

= —) S, ~(k)E E)b(~ —~, (k)) (1.6)
j=0

Here L is the length of the boundary, and velocity e
is the linear response to the external electric field E
To calculate v, one has to add the term eE/m to the
right-hand side of the equation of motion (1). The use of
Eqs. (1), (5)—(7), and (16) allows one to express S ~(k)
in terms of the eigenfunctions gz(x). We present here
the results for the diagonal components of the oscillator
strengths:

modes is much weaker than the interaction with the mag-
netoplasmon. An explicit calculation in the framework of
our model gives

1 ( net 5 2m(ln((ka() (, j = 0,
( )s qnuu, ) 4z(ln((ka() ( j s, j & l.

The ac electric field applied perpendicular to the bound-

ary interacts with the x component of the dipolar mo-

ment of the modes. These moments, and correspond-

ingly factors F~, are of the same order of magnitude for

all the modes. Therefore, the difference in absorption for
this polarization is due only to the difference in the mode
frequencies:

1 f ne 5 2zs(ln((ka() (, j = 0,
s I rncu, p 4xs(ln((ka() ( j ', j & l.

It is interesting to notice that the absorption anisotropies
S~*/8"."—1 are of the opposite signs for the usual plas-
mon and for the acoustic modes, respectively.

To estimate the decay rates of diferent edge modes,
we include a phenomenological relaxation time w into the
equation of motion (1) by the substitution ii ~ ii+ e/r.
After such a modification the energy of the mode e~ be-
comes time dependent, e~(t) oc exp( —2t/7~). The latter
relation allows one to define the relaxation rates 1/r~. For
small dissipation the result can be expressed in terms of
the unperturbed eigenmodes g~ (x):

1 (u, (k) g,
l'

dx no(x) — ', , (21)
7j (dc7

g~. (x) being normalized by the condition (18). As one
can easily see from Eq. (21), the relaxation rate increases
with the mode number because of oscillatory behavior of
the eigenfunctions. We find for the plasmon and acoustic
modes

ur, ~, = (ka(u), 7. x .z
'

.
' (22)2(ln(ka(), j =0,

where Pi = 6/5, Pz = 60/53, . . . , P~ = 1.128 are slowly

varying with j numerical factors.
Solutions of Eq. (6) and perturbative results (22) ob-

tained above are applicable as long as dissipation is small
enough so that it does not afFect the charge distribu-
tion in the eigenmodes. The characteristic length of the
charge spreading l~ caused by dissipation is inversely pro-
portional to frequency, l = e2n/s~az7. . The small-
ness of the redistribution requires l to be shorter than
the characteristic length scale a/(j + 1) for spatial
variations of the eigenfunctions g~(x). The latter con-
dition imposes different restrictions for the plasmon and
acoustic modes; with the help of (13) and (14), we find

(ka(ln(1/(ka() & 1/~, w for j = 0 and (ka( & j /ur, 7. for

j g l. At smaller wave vectors, the results of Volkov and
Mikhailov [4] for the spectrum and decay rate are appli-
cable [15], whereas the acoustic modes are overdamped.
The region of observability of the new branches is shown
in Fig. 2.
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tor strengths and decay times for the acoustic branches
with low indices dier from the corresponding values for
the magnetoplasmon by powers of the same small pararn-
eter. The logarithmic function appears due to the long-

range nature of the Coulomb interaction. If the electron
system is confined by gate-induced potentials, the diKer-

enees in the mentioned parameters for the acoustic modes
and the conventional magnetoplasmon become less signif-
icant: the logarithmic function should be replaced by a
factor of the order of unity because of the screening of
the Coulomb interaction by the metallic gates.
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FIG. 2. The first three branches of th'e edge excitations;
= 2ne /emio, a. The dashed line separates the regions

of strong damping (below the line) snd weak damping (sbove
the line). In the latter region the acoustic edge modes become
observable.

The observability condition for the new modes is quite
restrictive. Indeed, as follows from (22), the product io,~
must be at least greater than 1/]ka[ for the first acous-
tic mode to be observed. If the characteristic values of
k are determined by a sample perimeter (which is typi-
cally 1 cm [16]),the condition (22) cannot be satisfied
even for the mobility of 10s cm2/Vsec. The technique
of using a metallic grating coupler [17] appears to be
more promising. In such an experiment the wave vector
k = 2vr/d is determined by the grating period d that may
be made [17] of the order of 1 pm. For the typical width
of the boundary strip 2000 A this implies the condition
(dc' ~ 1.

We treated the 2D electron system as a classical com-
pressible liquid. It was shown in [10] that under the
conditions of the quantum Hall eKect, the boundary re-
gion x a in fact is divided into alternating strips
of compressible and incompressible liquids. However,
the incompressible strips occupy only a small fraction

(aB/a)i~2 (( 1 of the boundary area and thus do not
aKect acoustic modes with a sufBciently smooth charge
distribution. It means that the spectra of modes with

j ( (a/a~) ~ are not affected by the quantum Hall ef-
fect. Furthermore, because the dissipation is suppressed
within the incompressible strips, the damping rate of the
novel modes is reduced below our estimate (22).

In conclusion, we found the new low-frequency excita-
tions propagating along the edge of a 2D electron liquid
in the presence of a magnetic field. These new modes
have acoustic spectra with velocities inversely propor-
tional to the mode indices. At a given wave vector k, the
frequencies of acoustic modes are lower than that of a
conventional edge magnetoplasmon by a factor I/~ ln ka],
where a is the width of the boundary strip. The oscilla-
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