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Vibrations and Berry Phases of Charged Buckminsterfullerene
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A simple model of electron-vibron interactions in buckminsterfullerene ions is solved semiclas-
sically. Electronic degeneracies of C6O induce dynamical Jahn-Teller distortions, which are uni-
modal for n$3 and bimodal for n=3. The quantization of motion along the Jahn-Teller manifold
leads to a symmetric-top rotator Hamiltonian. I find molecular Aharonov-Bohm effects where elec-
tronic Berry phases determine the vibrational spectra, zero point fluctuations, and electrons' pair
binding energies. The latter are relevant to superconductivity in alkali fullerenes.

PACS numbers: 71.38.+i, 33.10.Lb, 74.20.—z

For polyatomic molecules, the adiabatic approxima-
tion is often used to eliminate fast electrons in favor of
an effective potential for the slow nuclei. This approx-
imation requires special care when the positions of the
nuclear coordinates are near points of electronic degen-
eracy. If the electron-ion interaction is linear in the ionic
displacements (a generic case for symmetric, noncollinear
molecules [1]) the classical Jahn-Teller (JT) theory [2)
predicts that the molecule distorts and some (or all) of
the electronic degeneracy is lifted. The classical JT the-
ory is controlled by the largeness of S= ~E~+~//hu, where
a is the characteristic vibrational frequency, and E~+
is the relaxed energy of the distortion. For S= oo (i.e. ,
"strong coupling" or "classical" limit), the zero point mo-
tion of the ions is ignored.

At finite S, however, quantum corrections can be quan-
titatively and qualitatively important. For example,
while the JT distortion may break the Hamiltonian sym-
metry, quantum fluctuations along the degenerate man-
ifold or tunneling between JT minima can restore the
ground state symmetry [3). This is often called the
"dynamical Jahn Teller" effect. In addition, ion coor-
dinates may be subject to quantum interference effects.
Longuet-Higgins has found that a vibrational orbit which
surrounds a point of twofold electronic degeneracy, can
acquire a negative sign from the transport of the elec-
tron's wave function [3]. This efFect, often dubbed as the
"molecular Aharonov-Bohm (MAB) effect, " produces in
triangular molecules half-odd integer quantum numbers.
This has been recently confirmed spectroscopically in Nas
[4]. The MAB efFect is a simple example of the geometri-
cal Berry phase, which appears in a wide host of quantum
phenomena [5].

The soccerball shaped molecule Ceo (buckminster-
fullerene) and its various crystalline compounds have ig-
nited enormous interest in the chemistry and physics
community in past two years [6]. Since the discovery
of superconductivity in AsCso (A=K,Cs, Rb), with rel-
atively high transition temperatures (T, = 20—30 K),
much attention has been given to the electronic prop-
erties of charged C60" ions. C60 a highly symmetri-
cal molecule (a truncated icosahedron), and its electronic

lowest unoccupied molecular orbitals (LUMO) are three-
fold degenerate. Thus the Cso" ions are natural can-
didates for manifestations of dynamical JT effects and
MAB effects discussed above. Several groups have iden-
tified the fivefold degenerate Hs (d-wave like) vibrational
modes that couple strongly to the LUMO orbitals [7—9].
Varma, Zaanen, and Raghavachari (VZR) [7] proposed
that these modes undergo a dynamical JT distortion and
calculated the JT induced pair binding energies at sev-
eral fillings. These results were used to explain the large
T, 's of fullerenes relative to doped graphite supercon-
ductors. VZR used the classical approximation, and re-
stricted their calculation to unimodal distortions (defined
later).

Density functional and deformation potential calcula-
tions for Cso [7,8], estimate EJ+=40 meV. The impor-
tant vibrations are in the range of her =0.1—0.2 eV. Thus,
the classical parameter is in fact quite small: S 0.2—
0.4. This indicates that the ions' quantum fluctuations
cannot be justifiably neglected.

In this paper the vibrations about dynamically dis-
torted buckminsterfullerine ions are quantized semiclassi-
cally. I extend previous work of O' Brien, who has solved
the n = 1 case both exactly and semiclassically [10,11].
First, the unrestricted classical JT distortions are deter-
mined. For Cso", n g 3, the JT distortions are uni-
moda/, i.e. , involve one quadrupolar mode in the princi-
ple axes frame. For Csos, the JT distortion is found to
be bimodal, i.e. , two modes are distorted simultaneously.
Subsequently, the quantum dynamics parallel and per-
pendicular to the JT manifold are determined. The ex-
citation spectra and pair binding energies for n = 1, . . . , 5
are determined up to second order in S . I will show
that Berry phases give rise to selection rules for the pseu-
dorotational quantum numbers. These kinematical re-
strictions effect the pairing interaction between electrons,
and, therefore, also the superconducting transition tem-
perature.

This discussion is restricted to the simplest electron-
vibron interaction model of C60, which captures the
symmetries and degeneracies of this system. Electron-
electron interactions are presently ignored. The wave
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functions of the LUMO tq„states are represented by the
I = 1 triplet ]z), ]y), ]z). A single vibronic H~ multiplet
is represented by five real coefficients [7,10],

2

q =/~/5 ) M „az„,
p, =—2

M go„, = [2 sgn(m)] & [6 „+ sgn(m)b „],
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QO 392
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M where g is the dimensionless electron phonon coupling
O, p,
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constant. 0 ' is invariant under rotations of g in R~

where m, p, = —2, —1, . . . , 2, and a~ are the coeEcients and by construction, the eigenvalues of H are invariant

of the spherical harmonics Yt [12]. The Hamiltonian is under O(3) rotations of the molecule's reference frame.
H" is diagonalized by [11]

H"= g T '(m)
2

( z —~'ar 0 0
z + ~3r 0 T(co),

0 -2z)
(3)

( cosg sing 0
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—sing cosQ 0, 0 1 0 ~

—sing cosP 0
0 0 1) (sin8 0 cos8) ( 0 0 1)

where the Euler angles m = ($, 8, $) define the O(3) rotation which diagonalizes H". In the diagonal basis, the only
nonzero vibrational components which couple to the electrons are ci( l = (r, 0, z, 0, 0).

Since ]q]z is invariant under O(3) rotations, the total adiabatic potential is

V(z, r)
hu) 2 2 ~g
2

(z +r ) + ni(z —+3r) + nq(z+ v 3r) —ns2z
2

n, are the occupations of the orbitals ]i), i = 1, 2, 3 (or-
dered from top to bottom in H"), and P, n, = n Vis.
minimized by the JT configurations (z, r, n, ), which yield
the classical energies E„=V(z„,r„). The distortions are
shown in Table I. We choose 8= zgz as our semiclassical
parameter.

By (1), if we define axis 3 to be at 8 = 0, the z mode
is described by z

& (3 cos 8 = 1), and the r mode by

r~z sin 8cos(2$). Thus by Table I, n = 1, 2, 4, 5 have
unimodal distortions which are symmetric about the 3
axis, and n =3 has a birnodal distortion, about the 3 and
1 axes.

In order to quantize the vibrations, it is useful to ex-

q„(~) = M„D,(m)M, ',q, . (5)

D~ ~ is the irreducible rotational matrix of angular mo-

mentum I [12]. The classical kinetic energy can be de-

rived from (5) by the chain rule for differentiation. After
some cumbersome, but straightforward, algebra we ob-

press the kinetic energy in terms of small fluctuations
about the JT distortion. To that end, we parametrize
the JT degenerate manifold, (q&), in terms of the Euler
angles m of Eq. (3):

TABLE I. Semiclassical results for the ground states of buckminsterfullerenes [Eq. {2)]of charge

n (z„,r ) are the unimod. al (uni) or bimodal (bi) Jahn-Teller parameters; (n nqi, n )a3re electron

occupations of adiabatic states. E„are ground state energies [Eqs. (7),(9)] and U„are pair binding

energies.
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tain the compact expression:

4)3 =
(Ii, Iz, Is) =

I(,
z + r + ) Izldz

—sin@8+ cos@sin8$,
cos $8 + sin @sin 8$,
Q+ cos8$,

((v 3z+ r), (~3z —r), 4r ). (6)

For finite JT distortions, we can identify I,(z, r) as mo-

ments of inertia in the principle axes frame [12]. Thus,
the Euler angles dynamics follow those of a rigid rotator
[13].

The unimodal and bimodal cases will be discussed
separately. For the unimodal cases, r = 0 and I,
z2(3, 3, 0) on the JT manifold. The coordinate Q de-
couples from the rotational kinetic, which becomes that
of a point particle on the sphere. The quantization of
the rotational part is therefore simply (2Ii) Lz [13].
The remaining coordinates are three harmonic oscillators

r~ = (r cos(2$), r sin(2$), z —z). Including the quadratic
potential terms in V(z, r), we arrive at the vibrational
eigenenergies:

3
E„""'[L,n, ] =M ~,L(L+1)+) (n, +-,') . (7)

The rotational parts of the eigenfunctions are

~i"'(e) = Y~-(8 0) In'. )' (8)
tS

where ]n,,)' is an electron Fock state in the principle axes
basis. The overlap of this Fock state with a Fock state
of the stationary basis is a determinant that contains n
factors of Yi„,. Under reflection, YL,~(n —8, P+ n) ~
(—1)~YL,~(8, P). Therefore the electronic wave function
yields a Berry phase factor of (—1)"for rotations between
inverted points on the sphere which correspond to closed
orbits of q. Because of the invariance under reflection of q
[and thus the left hand side of (8)], a selection rule is ob-
tained: (—1)~+"= 1. Thus, the ground state for n= 1,5
has pseudo-angular-momentum L= 1 that contributes to
the zero point energy.

The analysis of the bimodal case of n = 3 proceeds
along similar lines. From Eq. (6) and Table I, we see
that (Ii, I2, Is) = 3g (4, 1, 1). Thus, the kinetic energy
includes the rotation of a rigid body with two equal
moments of inertia. The quantization of this system is
the quantum symmetric top Hamiltonian. Fortunately,
its solution is a well-known textbook problem (see, e.g. ,
Refs. [1,12]). In addition to the rotator, there are two
harmonic oscillators r~ = (z —z, r —r). The eigenvalues
of the bimodal C60 molecule are thus given by

2

,L(L+1)—,A.
" +) (n, + —,') ~, (9)

(6g2

where L and k are quantum numbers of ~L]2 and Li, re-

spectively, and k & L. The rotational part of the eigen-
functions are

@I.' I, [f] = D"I', (~)
XS

(10)

U„= E„+y + E„—g
—2E„, (12)

where E„are the total ground state energies. The cal-
culation above finds that all odd fillings have the same
semiclassical pair binding energy U = —2S+ 1 —

s S
The characteristic Jahn-Teller relaxation frequency is u,
which is of the same order of, or perhaps larger than, the
intermolecular hopping rate. Therefore it is a reasonable
approximation to model the intramolecular interactions
for the conduction electrons of AsCso by a negative in-

stantaneous interaction given by a Hubbard interaction
—

~U~ g, n, yn, 1, where n;, is the density of conduction
electrons with spin s on molecule i. Since important
perturbations have not been considered here (e.g. , in-

termolecular hopping and electron-electron interactions

[14]), I refrain from inferring quantitative predictions for
the superconducting transition temperatures.

In Table I we summarize the results for the vibrational
contributions to the ground state energies and pair bind-

ing energies of C60 . The semiclassical results contain
three leading terms in the 1/S expansion. However, one
may rightfully worry about higher order corrections since
for C60 the experimental estimate is 8 = 0.2—0.4. From
Fig. 1, we see that at least for the one electron ease,

m is the eigenvalue of L„where z is a stationary axis. In
distinction to the unimodal case, there is no single reflec-
tion which fully classifies the symmetry of the wave func-

tion. However, one can obtain negative signs by trans-
porting the electronic ground state in certain orbits. We
define the rotation of n about principle axis L, as C, .
The Berry phases associated with these rotations can be
read directly from Eq. (3). For example, for Q ~ Q + n

(Cs), the states ~1) and ~2) get multiplied by (—1). Since

D &
transform as Yj,k under C, , it is easy to determine

their sign factors. The results are given below:

Ci . ~1~0~2)' ~ ]1~0 2)', Ci: D~ I,
~ (—1)"D~„,

Cs. ]1,0 2)'-+ ]1,0, 2)', C D ~( 1) + D

Cs ~ [1,0, 2)' ~ —[1 o 2)' Cs . D~ „~(—1) D~
(11)

Clearly, g, being coemcients of quadrupole distortions,
is invariant under Ci, Cz, Cs. Thus, C, describe closed
orbits in Rs. In order to satisfy (10) and using the de-

generacy of Eb' for k ~ —k, we find that L must be odd

and k must be even. In particular, the ground state of

(9) is given by L =1, and A: =0.
A relevant quantity for superconductivity is the "pair

binding" energy [7,14] for odd fillings n = 1, 3, 5:
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Tote added. —After submittal of this Letter, I was

made aware of previous work by Erio Tosatti on the con-
nection between Berry phases and superconductivity [17].

1/S

FIG. 1. Ground state energy (in units of bc') for one elec-
tron. Dashed line: semiclassical result, Table I. Solid line:
exact results of O' Brien, Ref. [11].

the semiclassical approximation for the ground state en-

ergy works reasonably well for S & 0.25. In Ref. [15],
the quantum model (2) is solved exactly in a truncated
vibron Fock space. There it is found that the qualitative
features of the spectrum (level degeneracies and order-

ing) are well reproduced by the semiclassical pseudoro-
tator Hamiltonians (7) and (9) down to S & 0.5. In the
quantum regime, the pseudorotational contributions are
expected to dominate. If we extrapolate the semiclassical
results to small S, we expect a significant enhancement of
the magnitude of pair binding energies U„. Indeed, Refs.
[15,16] find at small S that Ui —5S+ C7(Sz) which
is a factor of 5/2 larger than the classical Jahn-Teller
value —2S. From the weak coupling point of view, this
enhancement is due to local molecular degeneracies. It
is therefore missed in the standard (single band) Migdal
Eli ashberg diagrams. Further details including the effects
of multiple vibron modes on the experimental spectra are
described in Ref. [15].

In summary, buckminsterfullerene is a correlated quan-
tum electron-vibron system. Semiclassically, the dynam-
ical Jahn-Teller distortions in Cso" are quantized as
pseudorotators subject to Berry phases. For n = 1, 2, 4, 5

there are unimodal distortions which give rise to pseudo-

angular momenta spectra, plus three harmonic oscilla-
tors. For n = 3, there is a bimodal distortion, which

generates a spectrum of a symmetric top rotator, plus
two harmonic oscillators, The Berry phases of the elec-
tronic wave functions have been calculated and their se-

lection rules for the pseudo-angular-momenta quantum
numbers have been determined. The pseudorotator en-

ergies enhance pair binding, and thus superconductivity,
relative to, e.g. , doped graphite. It would be exciting
to observe the details of the electron-vibron correlations
experimentally.

I am indebted to Seb Doniach and Yossi Avron for
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