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Possibility of Observation of the Critical Paramagnetic Longitudinal Spin
Fluctuations in Gadolinium by Muon Spin Rotation Spectroscopy
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The theory described here showers that the muon spin depolarization rates measured on gadolinium

in the critical paramagnetic region give direct information on the longitudinal (along the wave vector

q) spin fluctuations. In the Ising regime it is possible to distinguish the parallel (along the c axis)
from the perpendicular fluctuations.

PACS numbers: 76.75.+i, 75.40.Gb, 75.30.Gw

Gadolinium is a rare earth metal which crystallizes in
the hexagonal close packed structure (hcp) and exhibits
simple ferromagnetic ordering along the c axis at tem-
peratures near the Curie temperature, Tr: = 293 K. Its
ferromagnetism is due to the Ruderman-Kittel-Kasuya-
Yosida interaction between the Gds+ ions which are in
the Sq/q state. This ionic electronic structure suggests
that the magnetocrystalline anisotropy is very small.
Therefore a simple Heisenberg behavior was expected for
the magnetic properties of gadolinium near Tr. . Con-
trary to these expectations, measurements have shown
that these properties are quite complicated. It is only re-
cently that a consistent experimental picture of the static
properties has emerged [1,2]. It seems that all the com-
plications are due to the magnetic dipole-dipole interac-
tions. These long range interactions cause a crossover
as the temperature is reduced in the paramagnetic re-

gion from an isotropic Heisenberg regime to a dipolar
Heisenberg regime with a crossover temperature of ap-
proximately 4 K above Tr. . As the temperature is re-
duced further, there is a second crossover temperature to
Ising behavior approximately 0.5—1 K above Tr. [3].

The dynamics properties of gadolinium have been
studied mainly by two hyperfine techniques: the per-
turbed angular correlation method [4] and the positive
muon spin relaxation and rotation spectroscopy (ttSR)
[5, 6]. There is little information from neutron exper-
iments [7]. lsSR measurements performed on a single

crystal seem to show that the magnetic fluctuations have

a pronounced anisotropy when the temperature is ap-
proached to within —0.5 K from Tr. [5]. The lsSR
data recorded on a polycrystalline sample indicate that
the magnetic fluctuations are almost temperature inde-

pendent for 1 K + T —Tr: + 10 K [6]. Because pSR
measurements can be carried out in a wide temperature
range which can extend from Tc, up to very high tem-
perature, they should allow us to study in detail the dif-

ferent crossovers. Up to now no quantitative information
has been extracted from these measurements mainly be-
cause the relation between the data and the correlation
functions which characterize the fluctuations of the Gd +

total moments has not been available. Recently it has

been shown that it is possible to understand quantita-
tively pSR data recorded in cubic paramagnets [8]. The
purpose of this Letter is to provide a theoretical frame-

work for the interpretation of the available ltSR data on
gadolinium and to initiate further and more accurate ex-

periments. For an anisotropic crystal structure, the dipo-
lar part of the Hamiltonian is the sum, near the Brillouin
zone center, of two terms: one which is also present in an
isotropic compound and an extra one which is an Ising-

like term in the case of gadolinium. This latter term
strongly influences the dynamical behavior near Tc.

Before describing our work in detail we stress that,
following the usual terminology, the adjectives "longitu-
dinal" and "transverse" are used overall in the text in

two meanings: (1) to designate the orientation of the
muon polarization relative to the applied magnetic Beld

B,„q, and (2) to indicate the character of a spin fluctua-

tion relative to its wave vector q. The meaning becomes
clear in the context. En addition we use the words "par-
allel" or "perpendicular" to describe the direction of the
fluctuations relative to the c axis.

lsSR experiments [9, 10] are usually performed either
with the longitudinal or transverse geometry. These
geometries differ in the direction of the initial muon

beam polarization, P(t = 0), relative to B,„&. In a
longitudinal (transverse) experiment P(t = 0) is par-

allel (perpendicular) to B,„t. Note that a longitu-

dinal experiment can be performed without any ap-

plied magnetic field. We take P(t = 0) parallel to
the Z axis of an orthogonal reference frame, (X,Y, Z)
where X,Y', and Z are unit vectors. In a longi-

tudinal (transverse) geometry experiment the Pz(t)
(P~(t)) depolarization function is measured. Each of
these functions is an exponential function which is there-

fore characterized by a damping rate, Ag and A~, respec-

tively. We shall describe the crystal structure of gadolin-

ium in the orthohexagonal lattice structure (a, b, c) with

a = ah, , b = ah, +2bh, and c = ch where (ap„b&, ch) are

the basis vectors of the hexagonal lattice structure. Al-

though gadolinium is described by four interpenetrating
identical Bravais lattices in the orthohexagonal structure
instead of two in the hexagonal structure, the advantage
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The integral extends over the first Brillouin zone
and P and p stand for z, y, or z. We have de-
fined 'D = (po/4n) p„(gL,pB) . V is the volume
of the sample, po the permeability of free space,
pB the Bohr magneton, p„ the muon gyromagnetic ra-
tio (p&

——851.6 Mrad s i T i), and gl, the Lande fac-
tor This e.quation shows that the damping rate depends
on the coupling between the muon spin and the spins
of the magnet through the coupling tensor G(q) and on
the spin correlation tensor of the magnet itself, A(q, ur),
taken at u = 0, i.e., A(q)

—= A (q, ~ = 0). We have

G(q) = 1/ng Q& Gg(q) where the index d runs over each
of the ng = 4 gadolinium sites belonging to an ortho-
hexagonal unit cell and Gg(q) = P,. exp[iq (i + d)]G,,+, .
i runs over the orthohexagonal cells of the crystal lattice
and G,,+, is a dimensionless tensor which is the sum of
the classical dipolar and Fermi contact couplings between
the muon spin and the Gds+ ion located at distance vec-
tor r;~g from the muon. A(q) writes Q& &, Ag g (q) where

Ag g (q) is the correlation tensor between spins belonging
to sublattices d and d'.

Since our purpose is to describe the critical spin dy-
namics of gadolinium which is a ferromagnet, we are only
interested in the behavior of the tensor G(q) near the
zone center. We Gnd

G ~(q: 0) = —4z. [Pg~(q) —p 6 ~], (2)

wjth p = (d~ + r„H/4m) where d is a contribu-
tion from the dipolar coupling. PL (q)=q q~/q is
the longitudinal projector operator. In addition we de-
fine the transverse projector operator PT, (q) = b ~—
PP «(q) which will be used below. Using the fact that
the muon in gadolinium localizes in an interstitial oc-
tahedral site [11] we compute d = dil = 0.3485 and
d' = 1 —2d = 0.3030. r„ is the number of nearest
neighbor magnetic ions to the muon localization site and

of using the former one is that the spin dipolar inter-
actions (between the muon and the lattice on one hand
and within the lattice on the other) are better described.
We introduce two orthogonal reference frames: (a) frame

(a,b, c) in which a, b, and c are unit vectors collinear to
a, b, and c; (b) frame (x, y, z) which is chosen accord-
ing to the magnetic symmetry of the compound. In our
case, because gadolinium orders with its magnetic mo-
ments along the c axis, we identify (x, y, z) with (a,b,c).
We denote 8 the angle between the Z and z axes. We are
first going to derive an expression for Az(8 = 0).

We generalize the method of Yaouanc et al. [8], tak-
ing into account the hexagonal and non-Bravais crystal
structure of gadolinium. We derive the following formula
valid in zero magnetic field:

Az(8 =0) = z 17 dsq

V (2z)s ):G*~(q)G*'(-q)
Pw

+ G"~(q)G"~(—q) A»(q).

H, the hyperfine constant which is proportional to the
Fermi contact field, B „&, at the muon site:

: 0) = niPg~(q) —nsb ~, (4)

where ns ——ns g ns. We have retained in Eq. (4) only
the terms relevant in the sense of the renormalization
group theory. The first term describes the usual dipolar
coupling between the ions which is always present. The
second term introduces an Ising component in 'M which is
due to the anisotropy of the hcp crystal structure. There-
fore, in addition to the necessity to distinguish the fluc-
tuations transverse and longitudinal to q as needed for
the cubic compounds, we have to consider whether these
fluctuations are perpendicular or parallel to the easy axis
[13]. The symmetry properties of '8 in real and q space
dictate the following functional dependence for the spin
correlation functions:

A»(q) = A~ +(q)Pg ~(q) + A~ (q)Pr ~(q). (5)

A(q) is a symmetric tensor. AS+(q) and AS'~(q) are
respectively the transverse and longitudinal correlation
functions for the fluctuations which are either perpen-
dicular (P = z, y:—J ) or parallel (P = z =

~]) to the
c axis. If the fluctuations perpendicular and parallel to
the c axis are identical, the A»(q) expression is, as ex-
pected, the same as the one used for cubic compounds.
The Ap (q) and A~' (q) functions are related by the
fluctuation-dissipation theorem to the static wave vector
dependent susceptibilities, y~ +(q) and g~ (q), respec-
tively, and linewidths of the spectral weight functions at
a=0, I'& +(q) and I'& ~(q), respectively,

As"(q) = '",k.T "",.",'".
Po (gLpB)'

(6)

N is the number of Gds+ ions in the crystal and A:B the
Boltzrnann constant.

Po Ag
+cont = gL JpB rpH

4m 'U

where v is the volume of the orthohexagonal cell. From
the experimental values B, „q ———0.698 T [11], gg J =
7.1, and v = 132 A.~ [12] we compute r„H/47' = —0.278.
Therefore p~ p = 1/3 —0.278 = 0.055, i.e., p~ (( 1.
This means that this parameter can be safely neglected
in the temperature range investigated up to now. We
shall prove it below.

For the computation of Az(8 = 0) we need to specify
A(q), the properties of which are controlled by the Hamil-
tonian '8 of the magnet which we take as the sum of two
terms: the usual Heisenberg Hamiltonian and the dipo-
lar Hamiltonian which describe the exchange and dipolar
interactions between the Gds+ ions, respectively. The
critical dynamics is determined by the small q behavior
of these interactions. In this limit the dipolar interaction
depends on the tensor [3]
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8IJp ~ ng 8 pp ~ nd,
V = ——p k~T =———p k~Tr.34vr" v 347r" v'

Using the same approach, an expression for Az(8
z'/2) is easily obtained:

(8)

aBz 3 Xi,L,
(q) 2 X~(,L(q)

Er&~(q) +
sr~~ ~(q)

(9)
Note that the damping rates depend only on the longi-
tudinal fluctuations. By simple linear combination, Eqs.
(7) and (9) give the possibility to determine separately

AP, L, y
"'

d z X~'(e)
I'~'(~) (10)

for P = J and P =
~~

if Az(8 = 0) and Az(8 = x/2) are
measured. Therefore ySR measurements on gadolinium
give directly information on the longitudinal spin dynam-
ics. In addition it is possible to distinguish the perpen-
dicular from the parallel fluctuations. If p is different
from zero, the transverse fluctuations contribute to the
damping. With po = 0.055, if we use the results derived
for the cubic dipolar Heisenberg model [14], we find that
at T —Tr. = 0.25 K the contribution of the transverse
fluctuations is almost negligible: it represents only 20%
of the contribution of the longitudinal fluctuations. At
T —Tc = 1 K it has already decreased down to 8%.

We have just derived the longitudins1 damping rate
expressions for 8 = 0 and 8 = vr/2. For an arbitrary 8
value the following relation holds:

From Eq. (1) and the results given at Eqs. (5), (6) and
at Eq. (2) with p = 0, it is a simple matter to derive an
expression for Az(8 = 0):

A (8 0) ~
"'

d z 4 X ' (V) 1 X '(V)
(7)Ir"(~) 5 I'~~ ~(~)

We have set

Since at suRciently high temperature compared to T~
the Ising anisotropy does not influence the static mag-
netic properties fl, 2], one can expect that the dynamical
properties should not be influenced by this anisotropy.
Therefore in this temperature region the fluctuations per-
pendicular and parallel to the c axis are identical. This
means that Az(8) and Ax(8) are equal and independent
of 6I. We 6nd

A, (8) =Ax(8) =Az =Ax =Wl'(~), (12)

I I 1 i IIII I I ~ ~ ~ I IiI I ~ I I 1 I ~ ~
I

dipohr hvaa~c

where W is a nonuniversal constant and I (p) a func-
tion which hss been first defined in Ref. [8). It can be
found by identifying Eq. (12) with Eq. (7) or Eq. (9)
and hss been computed by Frey and Schwabl [14]. The
angle &p is a measure for the temperature through its de-
pendence on the correlation length (: y = arctan(qD()
where qD is the dipolar wave vector determined by the
relative strengths of the dipolar and exchange interac-
tions.

We now consider the two sets of published gadolinium
data [5, 6]. In Fig. 1 we present the 10 mT transverse Beld
damping rate data recorded on a polycrystalline sample
[6]. Although the previous theoretical results are strictly
valid only in zero magnetic field, we may expect that a
small magnetic field will not affect them. The full line in
Fig. 1 is a fit to the polycrystalline data using Eq. (12)
with W = 5.82 MHz alld g~(0 = 0.105. (0 is the correla-
tion length at T = 2'. From the expression of W given
at Eq. (5.10c) of Ref. [8] we deduce qD = 0.084 A. i

and therefore (0 = 1.25 A.. The expression for W which
has been derived for cubic compounds should be valid
in our case because there is no crystalline structure de-

Az(8) = cosz 8 Az(8 = 0) + sinz 8 Az(8 = 7r/2).

Thus the damping rate Az(8) is a linear combination of
Az(8 = 0) and Az (8 = z/2). Equation (11) has been de-

rived using Eqs. (2) and (5). The relation as given in Eq.
(ll) is valid for the transverse damping rate if Z is re-

placed by X. Moreover, the following relations between

the longitudinal and transverse damping rates can be eas-

ily shown: Ax(8 = 0) = Az(8 = &/2) and Ax(8 = 7r/2)
= [Az(8 = x/2) + Az(8 = 0)] /2. Thus transverse field

measurements do not carry more information than zero
field measurements (here we neglect the efFect of the ap-

plied field on the magnetic fluctuations).
For a polycrystalhne sample, in a first approximation,

we have Pz,x(t) = exp (—Az.,xt) where Az and Ax are

respectively the powder average of Az(8) and Ax (8). The
previous relations which are valid for crystals imply Az
= Ax.

~ yolycrystal meas

average over single
cgstgl Ineasuamaaee

a ~ s s ljsl

10
T-Tc (K)

I s I assai

100

FIG. &. Temperature dependence of the p,sR da[[npmg
rate for gadolinium. The full line is the prediction of the
dipolar Heisenberg model which depends on two parlne-
ters: q~(c = 0.105 which fixes the temperature scale and
W = 5.82 MHE which sets the sca1e of the damping rate. The
polycrystal and single crystal data are from Re&. [6] and [5],
respectively. The notation is further explained in the xnain

text.
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pendent parameter in it. Comparing these values to the
corresponding ones for cubic magnets (Table II of Ref.
[8]), we see they are, within the expected range. We note
that the mode-couphng theory of the dipolar Heisenberg
model [14] gives a good description of the data down to
T —T~ 4 K. The crossover from the isotropic Heisen-
berg regime to the dipolar Heisenberg regime occurs at
= 15 K which is to be compared to the = 4 K value de-
rived from the susceptibility measurements. In Fig. 1 we
have plotted also the powder average of the single crystal
zero field damping rate data [5]. There is a disagreement
between the two sets of data. We do not understand
the origin of the discrepancy on the vertical scale. We
suspect that it refiects some experimental problems. Be-
cause of this discrepancy we cannot analyze the data in
more detail. We simply note that a comparison between
the polycrystalline data and the full curve of Fig. 1 seems
to indicate that the Ising crossover occurs around 4 K
above T~, i.e., when the theoretical prediction for the
dipolar Heisenberg Hamiltonian fails to account for the
polycrystalline experimental data.

In conclusion we have shown that @SR measurements
have the potentiality to give essential information on
the longitudinal fiuctuations in gadolinium in truely zero
Beld Before. giving any definite statement about their
temperature dependence more data are needed, particu-
larly in zero field for which the present theoretical devel-
opment is directly applicable. The purpose of the anal-
ysis of such data would be to check the validity of the
Hamiltonian used to describe the magnetic properties of
gadolinium at T~ and the reliability of the mode cou-
pling approximation to describe uniaxial magnets [15].
It is worth noting that when the muon site and the con-
tact field are known, it is a relatively simple matter to

write the relations between the ySR damping rates and
the spin correlation functions. Near the Curie tempera-
ture @SR probes mainly the dynamical properties close
to the center of the Brillouin zone where only limited
experimental data are available from other methods.
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