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Envelope Analysis of Intense Laser Pulse Self-Modulation in Plasmas
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An envelope equation describing laser pulse self-focusing and optical guiding in plasmas is derived and

is used to analyze self-modulation. Included is the plasma wave generated by the pulse front, which

leads to periodic focusing, radial energy transport, and laser envelope modulation. The onset criterion
and growth rates are calculated and compared to simulations using the envelope equation and a non-

linear fluid code. For a long square pulse, onset of strong self-modulation occurs at one-half the power
needed for optical guiding.

PACS numbers: 52.40.Nk

The propagation and guiding of intense laser pulses in

plasmas is a problem of recent interest with numerous po-

tential applications ranging from wake field acceleration
to short wavelength radiation generation [I]. Optical

guiding is necessary in order to propagate a laser pulse

over distances larger than the vacuum diffraction (Ray-
leigh) length, Ztr =ttr$/Ap, where tp is the laser spot size

at focus and Ap is the laser wavelength. Possible methods

for guiding laser pulses in plasmas include relativistic

guiding [2-4], which requires a laser power P greater
than a critical power P„and channel guiding [5-9],
which requires a preformed plasma density channel with

a depth bn greater than a critical depth bn, Rece.ntly, it

has been observed via simulation that a relativistically

guided pulse can undergo severe self-modulation [9-12],
whereby the pulse rapidly (within a few ZR) breaks up

into an axial beamlet structure with a period equal to the

plasma wavelength A,~. Consequently, this beamlet struc-

ture can resonantly drive a large amplitude plasma wave

with an axial electric field & 100 GV/m [11,12]. Simula-

tions indicate that self-modulation can occur when P
& P, and L & Az, where L is the laser pulse length [11).

In the following, an envelope equation is derived which

describes the two-dimensional (2D) evolution of laser

pulses in plasmas, including the effects of relativistic and

channel guiding, plasma wave generation, diffractive

beam head erosion, etc. This envelope equation approach
is advantageous (i) because of its simple form, which aids

in physical interpretation, (ii) because of its ease in nu-

merical solution, and (iii) because it lends itself to analyt-

ical calculations of various phenomena, such as the

dispersion relation describing laser pulse self-modulation.
The envelope equation is derived from the relativistic
Maxwell-fluid equations, assumes that the laser pulse

radial profile is approximately Gaussian, and is valid

provided ap « I and kyar p
» 1, where k& =2+/Az =

z/tcp,

to~=(4tre np/m, )'t is the electron plasma frequency,
and np is the ambient electron density. Also, ap=6
X IO ' Apl', where Xp is in pm and I is the laser inten-

sity in W/cm, assuming circular polarization. In this

Letter, this model is used to analyze self-modulation.
The physical mechanism for self-modulation is delineated
and the onset criterion, as well as growth rates in various

(tI /tI( +k )bp —
kt, ia) /2, (ib)

where a-eA&/mc is the normalized vector potential of
the laser field, a 2 (ae„ia e„)+c.c—. (circular polar-

ization, a. a=(a) ), bp=bn/np (a[ /2, hp=n—/np —I,
nt (r) is the initial electron density profile, np=n (0),
and Bn =n —n is the perturbed electron density. In

deriving Eqs. (Ia) and (lb), the independent variables
g=z ct and r =t were—introduced, the quasistatic ap-
proximation [4] (t)/Br =0) was assumed in the electron
fluid equation, Eq. (lb), and the slowly varying envelope

approximation was assumed, i.e., a =a(r, g, r)exp(ikpg),
where (Ba/8$(, [8a/Bcr(«(kpa) and kp=2tr/Ap. Furth-
ermore, (Bn t /'dr

( n~/rp -and tp~/top && I were as-
sumed, where top is the laser frequency. In Eq. (lb), the

regimes, are calculated. The results of the envelope equa-
tion are compared to Maxwell-fluid simulations using the

nonlinear model described in Refs. [9,11,12].
For a long, axially uniform laser beam with a Gaussian

radial profile, the results below indicate that guiding at a

constant spot size is possible [7] when P=P~, where

P~/P, = I bn/LLn„— P, (GW) =17k&/Ap, bn, = I/ttr, r$,
r, =e /m, c, and a plasma density profile of the form

n =np+bnr /r$ has been assumed. A laser pulse with a
finite rise time will generate a plasma wave with a density
oscillation of the form bn- ~bn~cosk~(z ct). Thi—s den-

sity wave enhances focusing in regions where Bbn/Br & 0
and enhances diffraction where Ban/Br &0. Hence, the

envelope of a long pulse L & X~ which is at the guiding
threshold P Pst will become modulated at kz. This
modulated envelope resonantly enhances the density wave

and the process proceeds in an unstable manner. Self-
modulation is characterized by a radial transport of pulse

energy. This is in contrast to the standard 1D forward

Raman instability [11-14] in which modulation occurs
due to an axial transport of energy.

The self-consistent laser-plasma interaction can be de-

scribed by Maxwell's equations coupled to the cold elec-
tron fluid equations. In the limits a « I and k~rj&& 1,
the Maxwell-fluid equations reduce to [9,10,13]

V~+ a =k~ (hp+ bp) a,
2ik p

c r
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(3)
where P/P, =k~roaa(()/16, R =rL/ro, and r"=cr/Z~
The second, third, and fourth terms on the left in Eq. (3)
represent the effects of vacuum diffraction, relativistic
focusing, and channel focusing, respectively, whereas the
term on the right side represents the nonlinear coupling
of the envelope to the plasma wave. Equation (3) cor-
rectly describes well-known laser pulse evolution, such as
the inability of relativistic guiding to prevent the
diff'raction of short pulses L & )i~ [4,9,13].

In the following analysis of self-modulation, an ideal-
ized axial pulse profile will be assumed consisting of a
finite rise followed by a long flattop region. This sim-
plifies analytic calculations and allows for a clear discus-
sion of the physical mechanism. Realistic axial pulse
profiles can be examined by numerical solution of either

term Vgal /2 has been dropped from the right side,
which is valid provided k~ro))1. Notice that Eq. (Ib)
implies bp= ffdgg(( ()lail~(g), where g(() =(k„/2)
&&sinking and /=0 is defined to be at the pulse front; i.e.,

a((=0) =0 (the pulse exists in the region (& 0). In the
following, the eff'ects of certain instabilities, such as large
angle Raman scattering [13,15], are neglected.

An envelope equation describing the evolution of the
laser pulse spot size rL((, r) can be derived using the
source dependent expansion method [16], in which the ra-
diation envelope a is expanded in a series of Gaussian-
Laguerre modes, obtaining equations similar to Eqs.
(14a) and (14b) of Ref. [16],which were there applied to
the free electron laser. Assuming that a is adequately
represented by the lowest order Gaussian mode, a=ao
x exp[ —(1 ia)r—/rL], then rL evolves according to

8 I'L 4p2 I'L
I + „dx(l —x)e "+"'"'S(x)

Br k jrL 2ao "
(2)

where x=2r /rL, a=(ka/4c)8rL/Br, and S(x) is the
source term appearing on the right side of Eq. (Ia).
Furthermore, lun) =aaro/IL, where rii and aii are indepen-
dent of r. At r =0, rL =ro and 8rL/8r =0 are assumed
for convenience. Hence, aii(g) is the initial axial profile
of the laser pulse. Since only the fundamental mode is

retained, Eq. (2) is limited to the study of laser pulses
with Gaussian radial profiles. Non-Gaussian profiles and
certain transverse instabilities, such as filamentation or
the laser-hose instability [17],can be examined by retain-
ing higher order Gaussian-Laguerre modes.

Assuming an initial density profile which is parabolic,
n 1=na+hnr /rj, then the envelope equation, Eq. (2),
can be written in the form

the envelope equation, Eq. (3), or the quasistatic
Maxwell-fluid model, as was done in Refs. [11,12].

The evolution of a long, axially uniform laser beam can
be examined using Eq. (3) in the limit where the non-

linear coupling term is neglected; i.e., the right side of Eq.
(3) is set equal to zero. Matched beam propagation (ri
=f0 const) requires that the power satisfy [7] P =P~
%hen P~P~, the equilibrium spot size oscillates accord-
ing to k, ZgR /2=g+ —g- cosk, cr, where k, =4hn/
hn, Zii and g~ = I P/P—, ~ b.n/bn, .For k,cr && 1,
R =I+g c r /Zir, i.e., focusing for g- &0 and ex-

panding for g —& 0.
The beam head generates a density wave given by Bn

=f(dgIi(g —g)8lal /8$, where h(g) =
& coskzg and &

=bn/no He. nce, the envelope equation will have the ini-

tial form r) R/r)i =g- —2Pbn/atiP„where R(r =0)
= I. If 6n-c'oks~g, then the density wave produces
periodic regions of enhanced focusing and enhanced
diffraction. The onset of strong self-modulation corre-
sponds to g- ~ 2lb@P/aiiP, . If this is not satisfied, the
envelope diff'racts at all values of ( (for k,cz &(1) and
modulation is reduced. For example, if k~ L„;„&&1,

where I „;„is the rise length of a long flattop pulse, then
bn =(aii/2)cosk~g. In this limit, the onset of strong
self-modulation occurs at half the power needed to opti-
cally guide an axially uniform pulse, i.e., P =PM/2 (for
k„2L„;„»I, the onset power approaches P =P~).

The stability of a matched, axially uniform laser beam
can be examined by expanding about the matched beam
solution (rL =rq). Letting R =1+bR and assuming

l«l«I, «=bRexp(ik, &) and l»R/a(l«lk, bRI,
the equation governing the perturbed spot size is given by

82 P ri,"

8 2
+ o bR = —ik ' dg'bR,P P J 0

where rr =4 —5P/2P&

For sufficiently early times, r" &L„where L, —I/f is

the e-folding length and I the growth rate of the instabil-

ity, fd(bR (BR; i.e., the coupling term is secular in (.
This implies an unstable mode, bR -expI r", with a

growth rate I =I i, where I i =(Vcr + v —a) '~ j 2 and

v = —kz(P/P, ~ 0. The approximation fd(bR = (bR is

valid provided vr/4(rr +v )' & l.
For suSciently late times, r" & L„ the behavior of the

instability can be found using asymptotic theory of con-
vective instabilities [11,13]. Assuming bR —exp[i(kg—brur")], Eq. (4) yields the dispersion relation D=k(cr
—

bragi )+ki, P/P, . The asymptotic behavior of a convec-
tive instability can be found by letting 6'ao'=6m —ik,
where v = g/z", and by setting D(brii', k ) =0 and
BD(b'ro', k)/Bk =0 while holding br@' constant. This gives
(bro —o ) =2k~ l v l broP/P, The asympt. otic growth,
bR —exp(I i), can be solved in various limits. For exam-

ple, letting brii=6joi ~ Jo, where lbroil(( Vcr, implies

I =12, where 12i=(2vr"/Ja)' . This is valid provided
r"» v/2o (late-time asymptotic regime). In the limit
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~$ru~ ))~a, I =I 3, where I 3r" =J3(2vi ) ' . This is val-

id provided i«33~ v/4o ~ (early-time asymptotic re-

gime).
Numerical solutions of the envelope equation, Eq. (3),

have been performed and compared to the above theoreti-
cal results as well as to numerical simulations using the
nonlinear Maxwell-fluid code of Refs. [9,11,12). Here, as
in Ref. [9], the wave operator used in the fluid code is

identical to that on the left of Eq. (Ia). In this approxi-
mation the laser group velocity ig =c and the radially in-

tegrated laser power is constant at fixed g. The following
simulations assume A.0=1 pm and an initial normalized
intensity which rises from a =0 at /=0 to its full value
a=ap at (= —L„;I=—

5A~ and remains constant out to

,. „=15k&. Initially, rL =rp = IOA& and BR/r)r =0.
For fixed values of rp/) z, L„g).~, P/P„and dn/hn„ the
results of the envelope and fluid codes were independent
of nip/niz (simulations were performed with nip/pi~ =30-
300).

First, consider a predominantly channel-guided case
with P=0.1P, and hn =0.9hn, . In this case, the growth
rate is small compared to e/ZR and it is appropriate to
compare the numerical results to the theoretical growth
rate I 2. To compare with theory, the simulation points
r p =Zn/5 and (p = —L«Ne/2 are taken as the "initial"
values; i.e., the theoretical expressions were evaluated at

g=g —(p, r' —rp, where (, r are the simulation coordi-
nates. Figure l(a) shows plots of In(bR) versus (' at
fixed cr'=7.8Zn from I 2i (solid line), the envelope
equation (crosses), and the fluid code (si[uares). Figure
l(b) shows corresponding plots of In(SR) versus r' at
fixed /= 1 Ill. Virtually identical plots were obtained
from the envelope code and the nonlinear fluid code (in
the fluid code, rL is defined as the radius containing
86.47% of the power). For the P=0. I P, case, excellent
agreement among theory, the envelope code, and the fluid

code is obtained.
Next, consider a relativistically guided case with P =P,

and hn =0. In this case, the growth rate is significantly
larger, such that comparison to the theoretical growth
rates I I and I 3 is appropriate. Figure 2(a) shows plots of
In(bR) versus g at fixed cr'=1.2Zn from 13i (solid
line), I I

r" (dashed line), and the envelope equation
(crosses). Figure 2(b) shows corresponding plots of
In(bR) versus r' at fixed g=l ll~. The agreement be-
tween I ~r" and the simulation is somewhat surprising in

that the inequality vi/4(o + v ) '~
&& I is not well satis-

fied throughout the simulation.
For the hn =0 case, the fluid code exhibited a larger

amount of modulation than the envelope code. The en-

velope equation assumes a Gaussian radial profile. In the
fluid simulations, the radial profile deviated from Gauss-
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FIG. I. Modulation amplitude In(bR) plotted (a) versus ('
at fixed cr'=7.8Zn and (b) versus r' at fixed (' I 1k'. Results
at P =O. I P, are from I 2r (solid line), the envelope code
(crosses), and the fluid code (squares).

FIG. 2. Modulation amplitude ln(bR) plotted (a) versus ('
at fixed cr' 1.2Zn and (b) versus r' at fixed (' I lk~. Results
at P=P, are from I ii (solid line), I ir (dashed line), and the
envelope code (crosses).
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Self-modulation may also be reduced for highly nonlinear
cases in which the majority of electrons are expelled radi-
ally from the region of the laser pulse. Although severe
self-modulation may be a hindrance to some applications.
it can be a benefit to those requiring a large amplitude
plasma wave, which is resonantly driven to large ampli-
tudes by the modulated pulse structure.

This work was supported by the Department of Energy
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acknowledge useful conversations with A. Ting and %.
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FIG. 3. Envelope code result showing the normalized modu-
lation amplitude bR/(Ri plotted versus r with L„=O.Ikt, and
P/P, 0.25, 0.5, and 0.75.

ian in such a way as to produce a large modulation in the
intensity on axis and a relatively small modulation in the
spot size; i.e., )ap~ aprp/rL no longer holds. Simulations
indicate that the degree of distortion increases as the
modulation increases. In fact, for large modulation am-

plitude, the radial profile oscillates in g between a sharply
peaked profile and a hollow profile.

The onset of self-modulation is illustrated in Fig. 3,
which shows results from envelope code calculations with

An 0 and L;,M=O. IXt, for the powers P/P, =0.25, 0.5,
and 0.75. In each case, the normalized modulation am-

plitude b'R/(R) is plotted versus r, where (R) is the /-

averaged value of R. Theory predicts strong self-mod-
ulation to occur when P ~ P,/2, as is confirmed by Fig. 3.
Notice that for P/P, =0.25, a smail degree of modulation
is present even as the pulse is everywhere diA'racting (R
increases for all I,").

Previous analyses of short pulse Raman scattering
have assumed a ID nonevolving, plane wave laser field

[11,13,18]. These results are expected to be valid when

kyar

p» I and cr «Ztt. In the limit cz «ZR, the relevant
growth rates of I D forward Raman scattering [11],
I tp, and of self-modulation, I 3, are related by I JD/f 3

=(k~rp/2kp)'/. Hence, the growth of ID forward Ra-
man scattering becomes comparable to that of self-
modulation when krrp+ Np/to~ Antonse. n and Mora [13]
find a growth rate for small angle scattering for a 1D
laser field with scaling identical to that of I 2, however,
this is an early-time asymptotic result (I z is a late time).
Although these growth rates can be comparable, such
comparisons are problematic, due to the 1D versus 2D
nature of the calculations. For significant propagation
distances, cr ~ ZR, the 2D effects of focusing, diffraction,
and guiding cannot be neglected.

Additional Auid simulations indicate that for P&&PM,
self-modulation is reduced since the "effective potential"
associated with the focusing forces is strong enough to
overcome the diffractive effects of the plasma wave.
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