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Scale Invariant Mixing Rates of Hydrodynamically Unstable Interfaces
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The late time evolution and structure of 2D Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts is
calculated, using a new statistical merger model based on the potential flow equations. The merger mod-
el dynamics are shown to reach a scale invariant regime. It is found that the Rayleigh-Taylor front
reaches a constant acceleration, growing as 0.05gt, while the Richtmyer-Meshkov front grows as at
where a depends on the initial perturbation. The model results are in good agreement with experiments
and simulations.

PACS numbers: 47.20.—k, 05.70.Ln

The Rayleigh-Taylor (RT) instability occurs at an in-

terface between a heavy fluid supported by a lighter fluid

in a gravitational field [I). The Richtmyer-Meshkov
(RM) instability occurs when a shock wave passes an in-

terface between two fiuids of different densities [2). Per-
turbations of the unstable interfaces grow and develop, at
late times, into turbulent mixing zones. The evolution

and structure of these mixing zones is a subject of ongo-

ing research in many fields, such as astrophysics and iner-
tial confinement fusion [3-6].

In recent years several models of the RT mixing front
evolution have been suggested [1,4,6-91. Many of these
models are based on the observation that the mixing front
is topped by column-shaped bubbles of light fiuid, rising
and competing [7-101. At the late nonlinear stage, large
bubbles rise faster than smaller ones. A bubble adjacent
to smaller bubbles expands and accelerates while its

smaller neighbors shrink and are washed downstream.
This process leads to a constant growth of the surviving

bubbles and to an acceleration of the front. This descrip-
tion of the mixing front was pioneered by Sharp and
Wheeler (SW), who proposed a model for bubble rise and

merger [I]. Numerical studies of the SW model [7] show

that a constant front acceleration is attained. Studies of
a simplified version of the SW model by Glimm et al. [8),
based on an assumption of superposition between single
bubble and the local front velocities, showed that the dy-
namics of the model flow to a fixed point. This corre-
sponds to a constant acceleration which was found to be
in agreement with experimental data [8]. In these stud-

ies, however, the bubble merger rate is based on a super-
position principle and not directly derived from the hy-

drodynamic equations. A different approach was taken

by Zufiraia [9], who constructed a model in which the
bubbles are described by potential flow point sources in a
uniform flow field. Numerical solution of the equations
for a few dozen bubbles yields an acceleration for the top
few bubbles in accord with experimental results. Howev-
er, the flow potential that was used does not give the
correct single bubble linear and intermediate growth

rates, and thus should not be expected to yield quantita-
tively correct results in the nonlinear interaction and
competition stages. It is also impractical to solve the
model for large bubble ensembles necessary for statistical
analysis of the front structure and evolution. The }ate
time behavior of the RM mixing front has been studied
mainly by experiments and direct simulations [5). There
are, to our knowledge, no published models of RM bubble
competition.

In this paper we calculate the mixing rates and struc-
ture size distributions of both the RT and single-shock
RM bubble fronts between incompressible fluids with a
high density ratio (Atwood number A = I) in two dimen-

sions. For this purpose we combine a new statistical
merger model, first presented in Ref. [11],with a new hy-

drodynamic model of bubble competition, which is an ex-
tension of Layzer's single-bubble model [10]. This hy-

drodynamic model is used to calculate the single-bubble
evolution and two-bubble merger rates. Thus the front
evolution and scale invariant bubble size distributions are
derived with no free parameters. The model dynamics
reach a scale invariant regime, explaining the observed
independence of the mixing rates on the initial conditions.

We begin by describing a bubble merger model, in the
spirit of the Sharp-Wheeler model [1,7], which allows the
use of realistic merger rates and treatment of various

types of flow problems. In this model the bubbles are ar-
ranged along a line, and are characterized by their wave-

lengths (diameters) X;. Each bubble rises with a velocity
u(X;) equal to the asymptotic velocity of a periodic array
of bubbles with wavelength k;. Two adjacent bubbles of
diameters k; and k;+~ merge at a rate ta(X;, A;+~, t), form-,
ing a new bubble of wavelength X,;+X;+~. This represents
the surviving bubble expanding to fill the space vacated
by the bubble ~ashed away from the front. The interface
height, h(t), is found by using the average bubble veloci-

ty dh(t)/dt =&u). We define the size distribution func-
tion g(k, t)dl as the number of bubbles with wavelength
within d)j. of lj, . The evolution of g(k, t), neglecting near-
neighbor correlations, is given by
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N(t) ' = —2go(. , t) g(X', t)(0(k, k')d) 'Bg()(,, t )
Bt v 0

+ g(A. —) ', t)g(X', t)u)(k —X', k')dk',

y(z, x, t) = g a„(t)(t)„(x,z),
n t

((„(x,z) =cos(nkx)e
(2)

where 1(=2tr/L. The IIuid velocity is given by u=V(t.
The flow is assumed to be governed by the behavior in the
vicinity of the bubble tips [9,10,12]. Near the tips, the
interface is, to second order, z(x, t) =z();+z);(x—x;),
where zo; are the bubble's heights and z ~; are their curva-
tures. The interface moves with the fluid, as expressed by
the kinematic equation [10] u, =Bz/Bt =u„8z/Bx, evalu-

ated at the interface. The dynamics are given by
Bernoulli's equation 8(ti/Bt + I/2(u„+ u, ) +gz =const.
We expand these equations to second order in (x —x;)
near the bubble tips. The first order terms are automati-
cally satisfied due to symmetry, and the two zero order
Bernoulli's equations are equated due to the constant
pressure in the supporting fluid. Using the potential of
Eq. (2) with %=3, this yields seven coupled ordinary

where W(t) =Jo g(), t)d.) is the number of bubbles at
time t T.he first term on the right-hand side of Eq. (1) is

the rate of elimination of bubbles of wavelength X by

mergers with other bubbles, and the second term is the
rate of creation of bubbles of wavelength X by the merger
of two smaller bubbles. We note that numerical simula-
tions of the model and the solution found by numerically

evaluating Eq. (I ), which neglects correlations in the

model, are nearly identical, because negligible neighbor
correlations are produced for most merger rates. Analyz-

ing the model [I ll it is found that for a large class of
merger rates the dynamics reach a scale invariant regime,
where the size distribution function scales with the aver-

age bubble size.
I n order to quantitatively derive the front evolution and

size distribution, the single-bubble motion and two-

bubble merger rate must be supplied. These are calculat-
ed in the present work using a simple potential flow mod-

el of bubble evolution at an interface between an in-

compressible Quid and a constant supporting pressure (or,
equivalently, a much lighter IIuid). This model is an ex-
tension of a single-bubble IIow model by Layzer [10].
We consider two bubbles rising in a two dimensional con-
tainer or vertical channel (or, equivalently, a periodic ar-

ray of two bubbles of diA'erent sizes). The gravitational
acceleration is —gz, and the initial interface is along the
x axis. The bubble tip coordinates are (x;,zo;(t)), i
=1,2, with x~ =0 and x2=L. The flow potential is as-

sumed to be a sum of simple harmonic functions with the

problem symmetry and time dependent parameters:

differential equations for seven variables: the two bub-
bles' heights zo;(t), their curvatures =);(t), and the three
potential amplitudes a„(t). These equations are

/dt —v(o) d /dt (2) 2 (I )

iV

Z (y."' y(—') )da. /dt

( ()) ( (

+ +g(=o) Op) =0. (3)

g y")da„/dt+(u"')'/2+ v,"'v""+g- =0
n=l

where y„(o) =((„(p;), (I)„(,
z) =(8„'/2+=);(I. )((„(p;),

=e,'y(p, ), ;"'=a.'q(p, ), ,
"'=(a,'a. /'+- „a,') y(&, ),

p = (0, :p~ ), p2 = (L, "Oz), and i = I, ". For the single-

bubble RT problem the model equations (using equal
initial parameters for both bubbles) are identical to
Layzer's model and yield the correct linear growth rate
and terminal velocity. For initial conditions correspond-

ing to two unequal bubbles, the model shows bubble com-

petition. The model is compared against numerical simu-

lations and is applied to other problems, such as flow in

finite fluid layers, in Ref. [131. The agreement of the

model predictions with the simulations was found to be

very good.
We now use the bubble merger model to study two di-

mensional RT and RM bubble fronts. We assume that
the light fluid density is much smaller than the heavy

fluid density. Thus the potential flow model may be ap-

plied to calculate the bubble evolution and interaction.
For the RM instability, we model the shock by an impul-

sive acceleration, and assume that the fluid may be treat-
ed as incompressible after the shock has passed [14]. We
thus use g=0 and initial conditions in velocity (corre-
sponding to the initial velocity imparted by the shock) for
this case [15]. The single bubble rise velocity (the
asymptotic velocity in a periodic array of bubbles of
wavelength k) can be I'ound analytically [10,16]. The re-

sult for the RT case is u =(6)r) 't ~gl, and for RM
bubbles is u = I (/3 t)tk. t ' where t is the time since the

shock passage. %'e calculated the merger rate by solving

Eq. (3) with many sets of initial perturbations. The fol-

lowing results do not depend on the initial perturbations
used. A typical plot of the bubble velocities for the RT
case is shown in Fig. I (similar behavior is found for thc
RM bubble velocities multiplied by time t) The bubble.
velocities initially grow exponentially. Then, the veloci-

ties begin to saturate as the bubbles coexist. The com-
petition begins at time t i, when the smaller bubble veloci-

ty is at a maximum. The large bubble expands and ac-
celerates and the smaller bubble decelerates and is

washed downstream [17]. The large bubble finally at-

tains the velocity of a bubble of the full container width

[18]. We define the end of the merger process at the time

t2, when the smaller bubble velocity reaches zero. At this

time the small bubble is considered to be eliminated from
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FIG. 1. Bubble velocities for two bubbles in a channel of
length L= 1 with g=l. The initial conditions for the flow po-
tential parameters are a~ =1.27e —6, a2= —6.35e —5, and a3
=0. The exponential rise, coexistence, and competition stages
are clearly seen. For this bubble pair, q =1.03 and co =0.37.

FIG. 2. Scale invariant bubble size distributions. The x axis
is the bubble diameter in units of the average diameter. The
full line is the result for RT fronts and the dashed line is for
RM fronts. Inset: Dimensionless merger rates, r0p(q), for the
two instabilities. The upper line is for RT bubbles and the
lower line is for RM bubbles.

the ensemble. This criterion has been previously suggest-
ed by Glimm and co-workers [7,81. At coexistence, we

expect, from dimensional arguments, that the bubble ve-
locities are proportional to 1i.

't in the RT case and to X in

the RM case. We thus define the eA'ective wavelength ra-
tio of the bubbles at their coexistence stage as
q=[ui(ti)/u2(ti)] for RT and q=ui(ti)/uz(t~) for
RM. The merger time is defined by r(q) =t2 —ti, and
the merger rate is to(q) =r(q) '. We denote by toP(q)
the dimensionless RT merger rate. For two RT bubbles
with wavelengths k~ and A, 2, and with a gravitational ac-
celeration g, the merger rate is

This is due to the dimensional scaling of the flow equa-
tions: The equations are invariant under the transforma-
tion

{k~wiX, g~ wing, 1~ (wi/wz) tI

for any w~, w2&0. For RM bubbles, the merger rate
scales as tp(ki, k2, t) =t 'top" (A, i/A2), due to the invari-
ance of the flow equations under the transformation b,

wA, , t wtj in this case (g=0). Note that top()i, ~/k2)
=top(1i.z/ki ). The dimensionless merger rates found are
shown in the inset of Fig. 2 for both instabilities. For two
identical bubbles (q=l) the merger rate is zero, since
there are no mergers in a periodic array of equal bubbles.
The merger rate increases for large q, reflecting the fact
that very large bubbles quickly overtake their small
neighbors. These merger rates belong to the class of
merger rates, described in Ref. [11], for which the
merger model reaches a scale invariant regime. This is
verified by numerically solving Eq. (I). The size distribu-
tion function reaches the scale invariant form

h (t) —at, a =kp/3trOtp, (4)

where t0 is an arbitrary time in the scale invariant re-
gime, and X0 is the average wavelength at that time. The
factor a in Eq. (4) depends on the initial perturbation,
awhile the power law exponent 8 does not. Using the
merger law found above (Fig. 2) we find 0=0.40. This
prediction for power law growth of the RM bubble front
has been checked by full hydrodynamic simulations of a
single shock wave that passes through a randomly per-

g(k, t) =N(t)(k(t)& 'f(k/(X(t)&),

where (A. (t)& is the average wavelength. The scaled dis-
tribution function f is independent of the initial distribu-
tion. The asymptotic scaled size distributions found are
shown in Fig. 2. The distributions are quite narrow, with
few bubbles much larger than the average.

For the RT case, scale invariance implies a constant
acceleration of the bubble interface height [11], h(t)
=agt . We find a=0.051. This value is in agreement
with full numerical simulations of the RT front with ran-
dom initial perturbations (Youngs [4] finds a=0.04-
0.05; Ofer and co-workers [6] and Glimm et al. [4] .nd
a=0.05-0.06) and experimental results (Read [3] ob-
tained a=0.058-0.065 in approximately two dimensional
experiments).

The results for RM bubble fronts exhibit a new scale
invariant growth behavior. Using Eq. (I), we find that
the average wavelength increases as d(1i,&/dt =t 'g(X&,
where 8=fp fp top™(x/y)f(x)f(y)dxdy is the average
over the scale invariant distribution of the dimensionless
merger rate. Using this to evaluate the average front ve-
locity, (u&=[I/(3tr)]5, &/t, we find that the front height
asymptotically increases as
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turbed interface between two nearly incompressible Auids

with a high density ratio [19]. It is found that the bubble
interface rises as j with 0=0.35+ 0.0l, compared with
0=0.40 from the model. Further analysis of single-mode
and multimode RM fronts using the model presented in

this paper as well as full hydrodynamic simulations will

be detailed in a forthcoming publication [19].
In conclusion, the model described above oAers a

description, based on the How equations, of instability
generated bubble front evolution. The RT front accelera-
tion derived from the model is in good agreement with

simulations and experimental results. We obtain the first

description of the Richtmyer-Meshkov front in terms of
bubble competition, and novel results for the RM bubble
front evolution. In both cases, the front dynamics attain
a scale invariant regime, with a fixed scaled bubble size
distribution. The model may also be applied to calculate
other aspects of the front evolution, such as the time to
arrive at the scale invariant regime for diA'erent initial
bubble distributions.
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