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Exit Times and Chaotic Transport in Hamiltonian Systems
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A new statistical diagnostic tool for chaotic transport in Hamiltonian systems is proposed. The
method, based on the concept of exit times, has an advantage over the calculation of diffusion coeScients
in that it remains valid for nondiffusive transport processes. This method is tested on the Chirikov-
Taylor standard map: One finds that it is more robust than the usual diffusion coeScient D and conveys
the same information as D when the latter is meaningful, for all values of the nonlinearity parameter K.
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The major challenges raised by transport phenomena in

nonlinear dynamical systems are related with the charac-
terization, prediction, and control of these complex pro-

cesses in space and time. Understanding them is impor-

tant for many applications including heat and particle
transport in fusion plasmas, astrophysics, fluid mixing,
particle accelerators, and chemical reactions [1-3]. For
instance, control of transport processes in tokamaks is a

key issue in plasma confinement for controlled thermonu-

clear fusion [4]. These complex systems with a seemingly
erratic behavior are generally governed by deterministic
nonlinear equations, with solutions strongly sensitive to
initial conditions and evolving along intricate trajectories.
Transport is one aspect of the statistical nature of these
nonlinear dynamical systems. In this Letter, we discuss a

new approach and apply it to a well known area-pre-
serving map, which mimics the Poincare section of a 2 de-

grees of freedom Hamiltonian flow: The Chirikov-Taylor
standard map.

When studying chaotic motion, there is a belief that
transport and diffusive spreading for the density of some

physical quantity are almost synonymous. This belief is

so firm that, for instance, the prediction of a diffusion

coefficient is a major goal in fusion research and the suc-
cess of a transport model is assessed through its ability to
predict this coefficient. The diffusion coefficient for a
variable I is defined as the asymptotic spreading rate of
its second moment

if the limit exists. This definition implies that it is possi-
ble for a chaotic orbit to wander in a (practically) un-

bounded domain (otherwise D=0); it cannot hold to
properly describe stochastic behavior in bounded domains
(which occurs for most physical problems). Beyond this
definition, conventional wisdom expects that, on large
time (t =t'/a ) and phase-space (I =I'/a) scales, the re-
scaled motion I'(t') =alt, t,21 might approach a Brownian

motion in the limit s 0. While these questions are
beyond the reach of present mathematical physics (see,
e.g. , [5]), conventional approaches go even further [1]:
The quasilinear assumption estimates (1) by ((I,
—Io) )/2r, where r is a typical "short" time scale (e.g. ,

r =1 for the Chirikov-Taylor map). In other words, the

correlation function of increments of I, is approximated

by a Dirac (or Kronecker) distribution. This assumption

of the rapid decay (or even absence) of correlations is

rather drastic. Rigorously speaking, diffusion coefficients

are associated with Brownian motions and require a scale
invariance usually not found in Hamiltonian systems.
Indeed the phase space for Hamiltonians with 2 degrees
of freedom is usually divided into stochastic and regular

domains. Even in strong stochasticity regimes, chaotic
domains contain small islands of stability which may con-
stitute a finite measure fractal set in phase space [6].
The influence of these islands on stochastic trajectories
has been discussed by various authors [7]; in particular,
their stickiness was shown to induce specific long time

correlations on chaotic orbits, which prevent a "naive"
diffusional description of the process. In other words, the
situation prevailing in chaotic transport is one for which

the effective mean free path is at all times comparable in

magnitude with a macroscopic length scale, whereas a
diffusion model applies in the opposite case. Thus trans-

port is generally governed by nondiffusive processes; this

is well known in physics [8].
In this Letter, we develop a new statistical diagnostic

describing chaotic transport in deterministic systems,
based on the exit time concept and valid for nondiffusive

transport processes as well. Characteristic times have al-

ready been used by several authors [7,9-11] to describe
chaotic motion in relation with 1ocal structures in phase

space: They do not probe the large scale properties of the

system. Here, instead, we discuss an average exit time,
which is defined more generally than diffusion coefficient
D and conveys essentially the same information as D
when the latter is meaningful.
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Given a domain fL of phase space and a point xo E 0,
we define the exit time r (xp, 0) as the time [I] needed by
the orbit of xp to leave 0 (and r =~ if x, remains in 0
f'or all times t & 0). Then, given a probability density fp
of initial conditions (particles) on 0, the ensemble aver-

age exit time from 0 for fp ls

&r (Q))I, =J r (xp, Q)fp(xp)dxp. (2)

The choice of fp (e.g. , uniform on a subset of 0) is im-

portant. If it gives a positive weight to an invariant sub-
set of 0, then &r(Q))I, is infinite. A natural choice for

fp, from a dynamical viewpoint, is associated with ergod-
ic measures, but these are seldom known a priori: One
usually finds them by following trajectories. Moreover,
when stable islands are large or numerous, it may be
dificult to choose appropriate initial conditions outside
these islands. Therefore we introduce a second definition
of the exit time by averaging r along trajectories. Given
an initial point xo at ID=0, we choose a first domain 00
containing xp and find the exit time t i

= r (xp, Qp); then
we associate to the new position x, , (outside Qp) a new

domain Qi (e.g. , by shifting Qp, or by another symmetry)
and determine the exit time r(xi, Qi) we iterate this
procedure and denote by &T)(xp) the orbit average of' the
successive exit times, if it exists:

1
n —]

&T)(xp) = lim —g r (x,„,At, ) .
n-~ oo n 1]( ~p

(3)

so that, for initial data distributed according to a uniform
distribution fp on [ —r/2, r/2]:

As an orbit may wander through phase space, &T) de-
scribes "global'" aspects of transport (like D) while &r)
describes more "local" aspects [as a "local" coeScient
D(x) does].

With reasonable choices of domains D, &r) and &T)

can be finite in two cases where D is meaningless: (i)
When the orbit belongs to an accelerator mode, &(I,
—lp) )/t diverges like t; (ii) when the chaotic domain is

bounded, &(I, —lp) )/t decays like t '. However, one
should note that &T)(xp) is undefined [r(xp, Q) =~] if
xo belongs to an invariant island contained in 00. An al-
ternative definition of the diffusion coe%cient has been
proposed to discard this inHuence of islands [10]: Di, .„,
=a~BI~ &r '), with the harmonic average exit time
&r ') =fti[l/r(xp, Q)lfp(xp)dxp from a domain of size
61 (a is a numerical constant).

Finally, one should refer to the theory of stochastic
processes [12]. For one-dimensional Brownian motion
with space-dependent diffusion constant D(x) and drift
V(x), the expected exit time a(xp) =&r (xp, 0)) from a
slab 0 =[—L/2, L/2] with initial condition xp 6 0
obeys the differential equation (Vo)'+(Da')'= —

I with

a( —L/2) =o(L/2) =0. In particular, for V=O and
constant diffusion coeScient D,

We will use this latter expression to compare with (2)
and (3) at scales on which we try to model the dynamics

by a stochastic process,
For illustration, consider the standard map

l„+]=I„+Ksin0„,

6'. +] =~n+In+1.

which describes a model of a kicked rotator; parameter A.
'

controls the strength of the kicks. For K)) I, model (6)
is strongly chaotic and trajectories look close to Browni. ~n

motions ll, I I]. Large scale transport occurs for K
& K,. =0.9716. . . and a diffusion coe%cient D„„can be

estimated numerically. Unexpectedly, the rescaled co-
efficient D«~/K was found to oscillate strongly and reg-
ularly [13].

We compute the average exit time along an orbit
&T)(xp) for the standard map by fixing the domain Ap as
a band of width Al and shifting it by a quantity + &I/O

so that x, ,
6 0~, and repeating the procedure. To ensure

that the particle needs a few time steps to exit the current
0 (which gives smoother statistics), we choose a width

AI & K, because EC is the largest step allowed in one itera-
tion of (6). Moreover, this width should rather be a mul-

tiple of 2z because of the periodicity of phase space with

respect to I, but this condition is obsolete if K is very

large as the system seems then practically ergodic. Thus
we take 51=2trKm, where m ~ max(l/K, I ) and can be

varied continuously. Then we compute the average exit
time as a function of the coupling parameter K for a fixed

value of vi.
To propose theoretical estimates for &T), we assume

that the orbit average behaves as an ensemble average
like (5) with a Brownian diH'usion coeScient. Though
one has not established rigorously whether the orbits gen-
erated by (6) diffuse in action according to a Markov
process on large space and time scales, a Fourier repre-
sentation of &(I, —lp) )/2t yields [1,13) the following

asymptotic expansion D,,„of the diffusion coeScient for
K--~ oc

i I/2
8

Dasy =DgL 1+c
nK

where DqL =K /4=&(li lp)")/2 is the "quasilinear"
coeScient, and c =cos(K —tr/4). The agreement be-

tween D„,„/DQL and D«~/DgL . is reasonable f'or values of'

K for which there are no accelerator islets.
In Fig. I we plot the average exit time &T) vs K com-

puted for m =4. It is nicely fitted by C(m)DctL//D, ,~; the
constant C(m) =2tr m for m ~ in agreement with

(5). Figure I shows that &T) exhibits the same oscilla-
tions as DoL/.„D„nadDoL/D„„~ But, whereas D„„. /

DoL also displays peaks due to the divergence of (I) in

the presence of stable accelerator modes [1,131, &T) does
not vanish and behaves smoothly for such values of K:
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This shows the robustness of the averaged exit time to
these modes with our choice of 0 and that these oscilla-
tions are not mere artifacts. The transition time defined

by Chirikov in his seminal work [11] and a first study of
the harmonic average exit time [10] did not reveal such

oscillations because they took AI =2m: These oscillations
can only be observed if one takes the dominant behavior
(T)-hl /K into account and if the numerical estima-
tion of (T) involves enough statistics (i.e., particles spend

enough time steps in the domains).
We now discuss how the statistics of exit time depend

on initial distributions of particles. To test the equiva-
lence between the expected value (2) of the exit time for
an ensemble and the expected value (3) along an orbit,
one must check that the influence of the initial distribu-
tion is not significant. Indeed, if we start with a uniform
distribution of initial data (10,80) in a band of width Al,
the actions after the first exit from 0 will be distributed
(nonuniformly) over two sidebands, each one with a
width K. The shift by ~hl/2 "glues" these two bands
and yields a new "initial" distribution of particles, for
which we repeat the procedure. One hopes that, on it-
erating this process, the distribution will converge to-
wards a limit corresponding to averaging along an orbit.
This intuition is supported by Fig. 2, which displays the
ensemble averaged exit time from the first domain Ao

(~l~ ~ hl/2) and from the second domain Qt, for these
domains we chose hI =2+K, and our initial data were dis-
tributed at random in a band (~10~ ~ K) of width 2K
(which is the width of the asymptotic support). This
computation sho~s an important similitude between the
first and second exit times, and the oscillations of the
average second exit time are smoother than those of the
average first exit time.

For the standard map, the Brownian limit corresponds
to K ~ and m ~, so that each particle step after
every iteration is negligible compared to the size of Q.

1 2 3 4 5
K/27t:

FIG. 1. Average exit time (T) vs coupling parameter K for
standard map. Solid line: numerical results for one particle, 107

iterations, hl 2@Km, m 4. Dashed line: plot of 2x m Dot./
D„„to order 1/K.

We checked numerically that, in this limit, the averaged
exit time coincides with the Brownian estimate.

Moreover, Fig. 3 shows the phase-averaged (for phases

80 chosen at random according to a uniform distribution)
exit time as a function of Ip for points (lp, ep) from a
band 0 ~ I ~ h,I for K =100, m =4. Except for an

overall shift, this average exit time agrees quite well with

parabola (4), using (7) for the diffusion coe%cient. Yan-
nacopoulos and Rowlands [14] also checked that the

probability that the particle remains in a slab as a func-
tion of time approaches that of a diffusion process for the
standard map with K =20, Al =200.

Our last figure (Fig. 4) shows that, near the large scale
stochasticity threshold K„(T) scales according to a

power law (T)-(K —K, ) ' with a=3 in agreement
with previous observations [7,11]. Note that our data for
K —K, ~0.02 involve too few exits to be statistically
sharp.

These results show that the averaged exit time defined

by (3) enables us to retrieve the (large scale) transport
properties of the standard map not only for large values
of K, but also for intermediate ones and near the strong
stochasticity threshold. In particular, (T) is useful when
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FIG. 3. Squares: phase-averaged exit time (T)pp vs I() for
K = IOO, 51=2+Km, m =4 (IO particles per point). Solid line:
parabola (4) with D given by (7).

K/27K

FIG. 2. Solid line: first exit time averaged over a uniform in-

itial distribution (~lp~ ~ K). Dots: averaged exit time from
second band (10 particles, bands 51=2@K).
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FIG. 4. Average exit time (T) vs K —K, near large scale sto-
chasticity threshold for the standard map, in log-log scale (one
particle, hl =4tr, 10s iterations per point).

the chaotic domain encloses large islands.
To summarize, we have shown numerically, using the

standard map, that transport in Hamiltonian chaos can
be characterized by means of the averaged exit time.
Provided one chooses domains 0 with insight, this new

diagnostic tool remains valid in situations where diffusion
coefficients are ill defined, in particular when phase space
contains invariant closed curves acting as complete bar-
riers to transport, and cantori and chains of islets acting
as partial barriers; and when D is relevant, the average
exit time conveys essentially the same information. Near
stochastic threshold, the averaged exit time is still mean-

ingful, and easily computed in a system of sufficiently
large extension. Finally, when chaotic motion is bounded,
this new statistical tool enables one to probe "limited
transport" which is also investigated from a promising
more geometrical viewpoint [9].
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