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Semiquantal Dynamics of Fluctuations: Ostensible Quantum Chaos
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The time-dependent variational principle using generalized Gaussian trial functions yields a finite di-

mensional approximation to the full quantum dynamics and is used in many disciplines. It is shown how

these "semiquantum" dynamics may be derived via the Ehrenfest theorem and recast as an extended
classical gradient system with the fluctuation variables coupled to the average variables. An extended
potential is constructed for a one-dimensional system. The semiquantal behavior is shown to be chaotic
even though the system has regular classical behavior and the quantum behavior had been assumed reg-
ular.

PACS numbers: 05.45.+b, 03.65.Sq, 05.40.+j

There has been substantial effort made, over the years,
to understand quantum systems using a system of few

classical variables. These can be motivated in the 6 0
limit, such as elfective potential techniques [1,2] and
semiclassical methods like that of WKB, which lead to
the Einstein-Brillouin-Keller (EBK) [3] quantization
rules for integrable systems. These also include approxi-
mations to the Feynman path-integral formulation [4],
used to derive the periodic-orbit trace formula for chaotic
systems [5]. This relates the spectrum of the quantum
system to a weighted sum over the unstable periodic or-
bits of the classical system. They can also arise, as in

quantum chromodynamics for example [6], in the limit of
large N (number of degrees of freedom), and a classical
phase space can be shown to exist in the N =~ limit [7).
Further, there are many equivalent mean-field theories
that are used in nuclear physics, quantum chemistry,
quantum field theory [8-10], condensed matter, statisti-
cal mechanics, and optics (see the excellent reviews [I I,
12]). These are known variously as the time-dependent
Hartree-Fock method, the Gaussian variational approxi-
mation, etc. One way to understand these approaches
is to consider the time-dependent variational principle
(TDVP) formulation [8,13,14] wherein one posits the ac-
tion

I = dt&e, t lib —Hie, t).

The requirement that BI =0 against independent varia-
tions of (+, tel, and i%', t) yields the Schrodinger equation
and its complex conjugate as the respective Euler-
Lagrange equations (note that a ray rotation, i.e., iO, t)

exp[i', (t)/h]i%', t) leaves the variational equations un-

changed). The true solution may be approximated by re-
stricting the choice of states to a subspace of the full Hil-
bert space and finding the path along which BI =0 within
this subspace. In exceptional circumstances, this restric-
tion is the true space of the problem and the solution is
then exact. If we restrict i%', t) to the family of coherent
states [11,12,15-17] this corresponds in ordinary quan-
tum mechanics to a wave packet of the form

e(x) = N(trh) "l'

xexp[I/O[ —
—,
' (x —q)'+tp (x —q)+iX]) . (2)

Here N, k are the normalization and phase, respectively,
and q, p specify a point in the classical phase space of di-
mension 2n It i.s straightforward to show [18] that to
O(h), the equations for this system are Hamilton's equa-
tions for p, q, conserve the norm N, and yield

&=p q
—«q. p).

where H is the classical Hamiltonian. Hence, X(t) is

equal to the classical action; this can be used [18) to iden-

tify the semiclassical Bohr-Sommerfeld phase with the
Aharanov-Anandan form of Berry's phase [19]. A more

interesting situation arises when, as below, we consider
squeezed coherent states (the wave packets are allowed to
spread). Along with the dynamics for the centroid of the
wave packet, we now also consider equations for motion

for its spread. The full equations give us the mean-field

theories mentioned above [9-12,20]. If, alternatively, in

the Taylor series expansions around the centroid, we

truncate to second order in derivatives of the Hamiltoni-

an, we recover the equations of Heller [21], who has used

this method extensively in studying "quantum chaos. "
Implicit in these "semiquantum" methods is the as-

sumption that these dynamics are qualitatively similar to
those of either the fully classical limit or the full quantum

system. If the classical behavior is integrable, the semi-

quantal dynamics are said not to break the integrability
[22]. Consideration of quantal fluctuations is supposed to
"suppress" chaos and the full quantum dynamics are usu-

ally said to be regular. In this Letter, we demonstrate
that this is not always true. Using the example of the
double-well potential in ordinary quantum mechanics, we

show that quantum effects, in fact, induce chaos. While
neither the quantum nor the classical system are under-

stood to display the sensitive dependence to initial condi-
tions characteristic of chaos, the semiquantal dynamics
does do so. We justify here the use of the terminology
"semiquantal. " This is not a trivial point —we derive the
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dynamics directly from the quantum Hamiltonian with

no reference to the classical limit. In fact, it can be
shown [22] that semiquantal dynamics exist even for sys-

tems without a well-defined classical dynamics. However,
if the traditional "semiclassical" and classical limits do
exist, they can be recovered as special limits of semiquan-
tal dynamics. The terminology is hence most apposite.

While the standard approach uses the TDVP, we pro-
vide here an alternative derivation of semiquantal dynam-
ics via the Ehrenfest theorem. We believe that this is

some~hat more intuitive and is similar to formulations in

nonequilibrium statistical mechanics. The dynamics ob-
tained are the same as in the TDVP approach. Consider
a particle of unit mass moving in a one-dimensional
time-independent bounded potential with a Hamiltonian
H =p /2+ V(x) where 0 denotes operators. The equa-
tions of motion for the centroid of a wave packet repre-
senting the particle are

—(x) =(p),
dt

d (.) (
BV(x)

)

(4a)

(4b)

dx
dt

(6a)

dp
dt

v" +"( )
m!Zm

m=0, 1, . . . , (6b)

(6c)

da h +a m
V& ~&(x)

d't 2p (m —
I )!2

The system is now reduced to the dynamics of x, p, p,

where the () indicate expectation values. In general the
centroid does not folio~ the classical trajectory. We now

expand the equations around the centroid using the iden-

tity

l(F(u)) =
,
(U")F ",—n& 0,

n!

where F " =r)"F/rlu" ~i„iand U=-u —(u) (the repeated
index summation convention is used throughout, unless
otherwise specified). Using this and operator commuta-
tion rules, we can generate a countably infinite number of
moment equations (corresponding to the infinite dimen-
sional Hilbert space of the problem). The assumption
that the wave packet is a squeezed coherent state renders
the space finite; it provides the relations (X ) =(2m)!
xp /m!2 (no summation), (X ) =0, 4p(P ) =6
+a and (XP+PX) =a, which are easily recognized as
those for generalized Gaussian wave functions [9-12,20].
(This assumption is precisely that of the TDVP: The
wave packet is restricted to a given subspace. ) This
yields the equations

dp
dj

7m

V "'+' (x) m =0 1

P7E!2

dz
df 4p~

Br~i —]

,
V "' (.~'), n& =1,2

(m —
I )!2"'

Remarkably, these new variables form an explicit canonI-
cally conjugate set, yielding a elassica/ Hami Itoni an

phase space as our approximation to the Hilbert space.
The classical degrees of freedom are the "average" vari-

ables x,p and the "fluctuation" variables p, z, respective-

ly; the associated Hamiltonian is

7 2

2 2tH

V„„,(.x. , p) = V(x)+ + V "' (.i). m =1,2.
Sp2 m!2

~here the subscript ext indicates the "extended" potential
and Hamiltonian. This formulation is very interesting
and possibly quite powerful; it provides us with an explicit
gradient system, and the extended potential provides a

simple visualization of the geometry of the semiquantal
space. We may thus get a qualitative feel for the serni-

quantal dynamics before proceeding to detailed (numeri-
cal) analysis. We note here the following: (a) Both the
fluctuation and average variables are treated on the same
footing and the phase space is dimensionally consistent: p
has the dimensions of length and m that of momentum,
(b) The value of H, „& is (H) under this approximation,
and is conserved. (c) V,„,has an infinite barrier at p=0:
hence "quantum fluctuations" cannot be zero except in

the limit h — 0. (d) V,„,is symmetric in p corresponding

to a choice of sign in p=Wp= J(X ); the infinite barrier
renders the choice one of convenience and of no physical
significance.

We note also that this formulation is exact for the sim-

ple harmonic oscillator. For this system, the variables
(x,p) decouple from (p, z). The average variables hence
execute the usual classical harmonic motion. The fluc-

tuation variables are a bound one-degree-of-freedom
problem and in general execute oscillatory motion. It is

possible to find a fixed point in these variables however.
This is the familiar example of a Gaussian wave packet
that executes harmonic motion with a fixed spread (see
Ref. [21]). The extended potential in this case provides

and a (where we write x,p for &x), &p)) and .ire exactl)
those derived from the action principle [23].

We now introduce the change of variables p =p «nd

u =2pz, transforming Eqs. (6) to

d.x.

P.
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us with the quantum corrections due the "zero-point fluc-

t U at ion s.
We consider now the dynamics of the simple double-

well system with the Hamiltonian H =p /2 —ax /2
+ (b/4)x . The extended Hamiltonian is

dx =p (1oa)

dp~ =ax —bx -3bxp
dt

dp
d&

(10b)

(1oc)

dz 1

, +p(a —3bx') 3bp'— (10d)
dh 4p'

[which are just the explicit form of Eq. (7) with H(p, x)
as above] exhibit chaos. We have numerically investigat-

ed these equations over a range of parameter values and

initial conditions. We summarized here some of these re-
sults at the typical parameter values of a =1, b=0.01,

Ã a 1
H,„,= + ——(x +p )+

2 2 2 8p

+—(x +3p +6x p ),b 4

4

~here we have set h =1. If we examine V,„tin the upper
half of the x-p plane, it is straightforward to show that
there is always a minimum for the potential at (x,p)
=(O,p), where p is the largest positive real solution of
ap —3bp + 4 =0. For (=32a /243b ~ 1, this is the

only minimum; quantum effects are so large that the well

barrier is effectively absent. As g increases, two minima

appear in the half plane, corresponding to the well mini-

ma of the original problem; two saddle points also
emerge, interestingly. Also, the (x,p) system as driven

by the (p, n) system is like a nonlinearly driven DuSng
oscillator [24] with back reaction. With these in-

gredients, it is not surprising that the equations

i.e., where quantum effects are small but not negligible.
At low energies, as is typical for Harniltonian systems,

there are only integrable orbits. As the energy increases,
chaotic orbits also emerge; the two types are very near

each other in choice of initial conditions. The details of
the phase-space structure will not be discussed here.
However, the existence of chaos in this system has been

established using Poincare sections and Lyapunov ex-

ponents calculations [25]. In Figs. land 2 we show a
typical Poincare section; taken with p =0, p'~ 0. We can
see the features characteristic of Harniltonian chaos: the

typical stochastic web structure, and in Fig. 2, which is

an enlargement of Fig. 1, the familiar appearance of is-

lands is this stochastic sea [26]. The associated largest

Lyapunov exponent X,. „equals 0.125. The calculation of
Lyapunov exponents is also typical, with a slow saturation
and a residual oscillation of about 5%. The exponents are
symmetric around 0 and hence sum to 0 (to within

10 ). We note that for various orbits (as for this one)
where the classical motion would have remained confined

to one well, the fluctuation dimension provides a means

for the system to "tunnel" between the two wells.

In the classical limit, this system has on)y two indepen-

dent first-order differential equations, insuScient for
chaos. The quantum dynamics are said to have "no
chaos, " based on the fact that Schrodinger's equation is a

linear partial differential equation; the dynamics are said

to be formally equivalent to a classical harmonic oscilla-
tor system in quadrature on a 2iV-dimensional classical
phase space. It has been recently argued [27] that this is

too simplistic: The constraint of square integrability and

arbitrary ray rotation renders the space a compact com-

plex projected space CP(/V —
I ) which has a different to-

pological structure and may display substantially differ-
ent behavior. Further, there is a conjecture [22] that in

systems with inherently infinite-dimensional H ilbert

spaces, semiquantal effects enhance chaos (see Ref. [22]
for details). For this system, the dynamical effect of the
fluctuation variables is to induce chaos. This may be re-

10 =

5-

0-

-5-

-10 ij
-20

I

-10
I

0
I

10 20
I

2.5
I

5.0 7.5
I

10.0
I

12.5
I

15.0

FIG. 1. Poincare sections in the x-p plane at an energy of
H„I= —1.25. There are about 30000 points shown.
=0.125.

FIG. 2. Enlargement of Fig. 1. Notice the distinctive stabili-

ty islands in the stochastic sea.
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garded as support for the arguments of Ref. [22]; if in

fact the full quantum system has no chaos, this is anoma-
lous behavior that exists only in the semiquantal limit.

In summary, we have introduced above a way of view-

ing the time-dependent Hartree-Fock method and other
mean-field theories —the extended potential approach.
Using this formulation for the double-well system, we

have demonstrated that quantum Auctuations may induce
chaotic semiquantal behavior, in keeping with a recent
conjecture. Irrespective, care is indicated [28]: While
the variational and other classical approximations made
to quantum systems are quite powerful, their qualitative
behavior may be anomalous and may not exist in the full

quantum system nor its completely classical limit.
A. K.P. acknowledges the Robert A. Welch Foundation
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