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Fluctuations of the Probability Density of Diffusing Particles for DiH'erent Realizations
of a Random Medium
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We study the fluctuations of the probability density P(r, t) of diffusing particles to be at distance r at
time t in the presence of random potentials, represented by random transition rates. We find an exact
relation which expresses all the moments of P(r, t) in terms of its first moment, for both quenched and

annealed disorder and for any dimension. From this relation follows that anomalous diffusion implies
nontrivial behavior of the moments of P(r, t), such as an exponential divergence of the relative fluctua-

tions for large r.
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The random-walk model has been widely used to de-

scribe transport properties in disordered systems [1-6].
In general, the randomness of the media can be charac-
terized by two types of disorder: structural disorder and

random potentials. Models for structural disorder in-

clude percolation clusters, random walks (RW), self-

avoiding walks, or diffusion limited aggregation. A com-

mon feature of all these models is that they are fractals
on certain length scales [4,6]. Models for random poten-

tials can be developed in terms of continuous time ran-

dom walk (CTRW) and RW on regular lattices with a
random distribution of transition rates, representing the

random potentials [1,3,5].
In all these models, the crucial point is that transport

can be anomalous; i.e., the mean square displacement of a

random walk does not obey the common Fick's law

(r ) =Dt, but rather scales with time as (r ) =Dt 2/d.

where d & 2 is the anomalous diffusion exponent. This
reflects the commonly seen feature of average slowing

down of the motion of a particle in a disordered medium,
which is of interest for many applications [1,5].

When transport properties of such models are dis-

cussed, a central role is played by the propagator P(r, l),
which is the probability of finding a RW at time t at a
distance r from its starting point r=0. In disordered sys-

tems, P(r, t) itself can be regarded as a random variable

provided that we index it with a variable relating to
different realizations of disorder. This variable corre-
sponds to the density of independent particles diffusing in

this medium. Moments of P(r, t) with respect to the
configurational disorder contain information on the rela-
tion between the static disorder and the dynamical pro-
cess. There is also a close relation between the statistical
properties of P(r, t) and the behavior of vibrational exci-
tations and the superlocalization phenomenon of a wave

function in the system. It has been shown that similar
methods can be used for these problems, and that they
exhibit closely related features [7]. These phenomena are
also of experimental interest [8] and can be measured
through the low temperature behavior of the conductivity,
which is dominated by the mechanism of variable range

hopping [9].
In this Letter, we discuss disordered systems which are

described by a random distribution of transition rates on

regular lattices. This model has been extensively used for

many applications [10]. We show rigorously that anoma-

lous diffusion leads to a nonconventiona1 scaling behavior

of the probability density, which is reflected in the diver-

gence of its relative fluctuations for large r. These two

phenomena, i.e., anomalous diffusion and nonconvention-

al scaling, which are usually considered as two different

features of disorder, are thus shown to be strongly relat-

ed. To show this result, we first find a general relation,

applicable to all the varieties of this model, i.e., quenched

or annealed disorder, in any dimension, which connects

all the moments of P(r, t) with respect to different reali-

zations to its first moment.
Consider N different realizations of the disordered sys-

tem, in which a random walker starts at the origin at time

t =0 and moves until time t. Then

where P; (r, t) is the probability that in the ith realization

the RW has reached r at time t, and ( ) represents

averaging over the N realizations. For simplicity, we will

consider in what follows the moments of the propagator

relative to its value at the origin, i.e., we deal with the

variables u; (r, t) =P; (r, t)/P; (O, t).
Within the framework of this definition, an indication

of nonconventional scaling is that (uv(r, t)) is not asymp-

totically (in time) proportional to (u(r, t))v. Our calcula-

tion of the qth moment will be based on an expression for

(uq(r, t)) in terms of the first moment evaluated at a

shifted value of r.
For this purpose we first define the parameters of the

underlying RW and specify the parameters to be used in

the subsequent analysis. Let p(j) be the probability den-

sity that the displacement of the RW in a single step is

equal to j. We will assume this function to be symmetric

in the sense that (p(j)) =0 and to have finite second mo-

ments, i.e.,
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(2)

where d is the dimensionality of the space. For simplicity
we will assume that all of the second moments are equal
to a constant o, and that the second order correlations all
vanish. More general cases can be analyzed but provide
no essentially new information. We now return to the
problem of evaluating (u"(r, t)) as defined in Eq. (I) un-

der these assumptions.
At a fixed t, we can decompose the sum over Pq(r, t)

into contributions from RWs which have taken exactly n

steps at time t. The variable n can take on all non-

negative integer values. Let the number of realizations
out of the total N having this property be N„(t) so that

g N„(r) =N.
n=0

(3)

Nn

(u (r, r)) =—g g u; (r, t ~n) .
N n-oi-I

(s)

However, the definition of the model used in this analysis
implies that the propagator for being at a given displace-
ment is known [I I l once the number of steps is known,

i.e., one may write P; (r, t~n)= P(r, n) wh—ich depends
neither on i nor on t It therefo. re follows that (for large
t)

(u'(r, t)) =—g N„(t)u'(r, n)1

N n-0

—g e„(r)u'(r, n) . (6)
n 0

Equation (6) can be simplified by noting that the re-
striction indicated in Eq. (2) is equivalent to the state-
ment that the limit t ~ also implies n ~. An ap-
peal to the central limit theorem allows us to conclude
that u(r;n) can be approximated in this limit as a Gauss-
ian, hence in the large t limit we have

We can appeal to the law of large numbers to assert that

N„(t)
iim

" =e (t),
N

where 4„(t) is the probability density that exactly n steps
have been taken until time t. Let u;(r, t~n) be the nor-

malized distribution of the displacement at time t of a

RW in the ith realization, conditional on there having
been exactly n steps at that time. It follows that

Thus the qth moment of u(r, t) is related to the hrst mo-

ment of this function with a shifted argument. This rt-
sult is independent of dimension and valid for quenched
or annealed disorder.

We now find an expression for the histogram
N(ln(I/u)), i.e., the distribution of u over the different
realizations, for given r and t. For this purpose, we use

the alternative expression for the moments

1«v(r, r)) =) N (in(i/u) )«~d [In(I/u)1.
0

Identifying Eq. (10) with Eq. (9) we find

This is what we will term a regular scaling of the n~o-

ments. An example for this situation is a CTRW model

in which the pausing time probability density function

ttr(t) has a finite first moment (t). In the large t limit, n is

also large, allowing us by a renewal-theoretic argument
[12] to replace it by t/(t) With th. is substitution we

derive the expected Gaussian approximation to (u(r, t)),

(u(r, t))-exp —
2

=exp(t&r

2' t

in which we have set p=r/cx and r =t/(t) Moreover, i.n

this case 4„(t) may be calculated exactly, and has the
form A„(r) =t "e '/n!, and it therefore follows from (11)
that the distribution of u takes the form

tr /In(l/u)
N(ln(1/u)) =

r [r /I n ( I /O ) + 11 [In ( I /u ) ]

On the other hand, when the diffusion is anomalous,
i.e., (r') =Ot " and

2/d„

(u(r, t))-exp (is)

Let us no~ discuss the implications of these results.
l.or systems in which the diffusion is regular, i.e. , ~r-

=Ot for large t and the averaged probability density is a

Gaussian (u(r, t)) =exp( —r /Dt)„ it follows from (9)
that

ruq(r, r)) =(u(r Jq, t)) =(u(r, t))v

u(r, n) —exp( —r /2o2n) . (7)
where d & 2 and 6=d„/(d —I ), it follows from (9)
that

(u (r, t))—g u(r Jq, n)@„(t)=(u(r Jq, t)) .
n=0
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(9)

The long time form of the qth power of this function, in

turn, can be expressed as the rather simple expression

u'(r, n)-u(r Jq, n),

This asymptotic relation allows us to express (uq(r, t)) as

(u'(r, t)) =(u(r Jq, r)) =(u(r, t)&'",

i.e., there is nontrivial scaling of the moments. This be-

havior is called multifractality [6,13-1S]. An example

for this situation is furnished by a CTRW model with

ttr(t) —T'/t'+', where 0 & a & 1. For this case the prob-

ability density is known [16] to have the form (I S) with

8 =2/(2 —a).
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Let us now derive an expression for 4„(t) in this case,
and thus find the histogram N(ln(l/u)) and also confirm
the result (16) explicitly.

We define a dimensionless time r =t/T T. he Laplace
transform of lt/(r) can be shown to have the small-s ex-
pansion

X[(//(r )] =P(s)- I —s'-e
The Laplace transform of 4„(r) is known to be

Ebb„(r )l =@„(s)=— jr"(s),1 l//(s ) n

S

which, in the limit s 0, is approximated by

(s) sa —le ns'—

Thus the long time behavior of @n(t) can be found by in-

verting this transform. We can write the inversion in-

tegral as

in which I indicates the Bromwich contour, and 0 is the
parameter

' 1/(1 —a)

(zi)

In the regime Q&)1 we can evaluate the integral ap-
proximately by using the steepest descent method. In this
way we find

r )/2{a —1)
n 2a+]

e„(r)- n
exp —C

~ a (22)

It therefore follows from (11) that the histogram for
this case takes the form

e„(r)— e "' +"ds-n..+..
2w rs'

' a/(a —1)
1 n 1

exp[ —0 (( —g)]ds,
2EE gr gl

—a

(zo)

2

~ (In ( I /u ) ) 3a/2(l —a) (I -4a)/(I —a) [ln ( I / ) ] (6a —3)/2(l —a)

[ln(l/u)] r ' (23)

Note that since (22) is valid only for n)) r ', (23) is valid

only for ln(l/u) «r /r', and cannot be valid for large
1n(1/u ).

Let us now return to Eq. (11)which we approximate in

the long time limit as

(u~(r, r))- u(r Jq, n)4„(r)dn, (24)

where Eq. (22) is used to furnish an expression for
@n(r). While the resulting integral cannot be evaluated
exactly, we can again appeal to the steepest descent
method to find the exponential term in the resulting ap-
proximation. The exponential term in the integrand of
(24) is

n qp(u'(r, r ))—exp —C
2n

(2S)

and the value of n that maximizes this exponent is pro-
portional to q

' ' from which follows that

In(uq(r, r ))-q '/(2 ') In(u (r, r )), (26)

which agrees with our general result in Eq. (16) (applic-
able for all systems with anomalous diffusion) for the
CTRW case with l/r(t) —T'/t'+'.

Multifractal behavior of moments as indicated by Eqs.
(16) and (26) have been discovered for various simulated
systems [13,14], but has been established analytically
only for some specific models [1S]. This behavior indi-
cates that there is no single scaling exponent in terms of
which all the moments scale and is reAected, for example,

in divergence of the relative fluctuations of u(r, t) as fol-

lows.
Using Eq. (16), the relative fluctuations of u(r, t) can

be expressed in terms of the first moment

2
Au (u'(r, t)) —(u(r, t)&'

(u(r, t ))

(u(r, t))' —(u(r, t)&'

(u(r, t))' (27)

Since b &2, for large r, where (u(r, t)) «1, the second
term in the nominator can be neglected, and one obtains

2
hu

(u(r, t))'- ' ' (zs)

2

=exp (2 —8')1 br

urt )' '
i.e., the relative Auctuations diverge stronger then ex-
ponentially as the distance from the origin increases.

This expression corresponds to a measurable quantity.
Consider N independent diAusing particles in the pres-
ence of random potentials. Then, P(r, t) is just the (nor-
malized) density for particles to be found at distance r at
time t Equation (2.8) then implies that the relative fluc-

i.e., the relative fluctuations diverge as (u(r, t)) goes to
zero, or r goes to infinity. For the CTRL model dis-
cussed above, the form of (u(r, t)) is known explicitly
[16],and one finds
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tuations of this quantity would diverge as r increases.
It has recently been suggested [13-15] that such mul-

tifractal behavior is related to the existence of an algebra-
ic long tail in the histogram lV[ln(1/u)]. On the con-
trary, we find that both Eqs. (14) and (23) have an alge-
braic long tail behavior, but while the histogram of Eq.
(14) does not correspond to a multifractal behavior, that
of Eq. (23) does correspond to such behavior. This can
be understood by looking at Eq. (10) which can be
rewritten as

f+ OO

(u~(r, t)) =„N[[n(l/u)]e v " 't" d[ln(1/u)l . (30)Jp
In other words, (uq(r, t)) is just the Laplace transform ol'

lV[ln(l/u)], and therefore, the asymptotic behavior of the
latter is related only to the behavior of (u t(r, t )) for small

q. In particular, according to a Tauberian theorem, if

lV[ln(l/u)] —[ln(1/u)] for large ln(l/u) [as in (14)],
then (u (r, t)) —I

—Aq lnq-e for small q (excluding
a logarithmic correction), i.e., only the small q behavior is

nonmultifractal. However, in such cases, this small q be-
havior may indicate the existence of a q~;„, in which a
crossover between multifractal and nonmultif'ractal re-

gimes occurs, such that for q & q;„ that behavior of the
moments is nonmultifractal ~ Such features have been
found in other systems [17]. Note that Eq. (15) and
hence Eq. (16) are valid only I'or a large value of the ar-
gument in the exponent [[8], and say nothing about the
behavior for small q. Therefore they do not rule out the

possibility of such a crossover.
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