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Uncoupled, classical Maxwell-Chern-Simons theory is studied in regions in which the Chern-
Simons coefficient is a spacetime dependent quantity. Gauge invariance demands a modification
of the strict Chern-Simons form in such a region. Behavior is governed by boundary and initial
conditions. In many cases, the resulting classical behavior qualitatively resembles diffusive processes

in statistical systems.
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Introduction.—The Abelian Chern-Simons action de-
fined by [1-3]

S = /dV e nAror A (1)

is only gauge invariant if the coefficient u is globally con-
stant. In certain cases of interest the value of the Chern-
Simons coefficient is determined by underlying proper-
ties of a physical system. For example, radiative correc-
tions to Dirac fermions lead to a decisive value for the
coefficient [4-6]. A natural question is what happens in
such a theory if those physical properties change over
some length scale important to the physics of the model.
Then one is naturally left with a Chern-Simons coeffi-
cient which is a function of position and perhaps even
time. However, since the action given in Eq. (1) is not
gauge invariant under such circumstances it would ap-
pear that Eq. (1) cannot be a complete description of
physics in such a region. The question to be addressed
in this paper is the following: can the theory be made
self-consistently complete in a region in which g = p(z)?

We may adopt one of two points of view: (i) Chern-
Simons theory is only an effective theory which must al-
ways be derived from some deeper underlying model. The
inadequacies of the Chern-Simons term for varying u(z)
must be resolved by a more careful investigation of the
underlying theory. (ii) The Chern-Simons action is a
valid starting point for constructing a theory. Its rela-
tion to physics is not a priori clear, but the requirements

0031-9007/94/72(18)/2823(4)$06.00

of gauge invariance and energy conservation will dictate
how such a model should behave.

In support of the former viewpoint, one recognizes that
the dynamically induced Chern-Simons term which arises
from Dirac fermions of a definite spin is only part of the
story. There are short wavelength corrections to the form
in Eq. (1) which are usually ignored [6]. These will al-
most certainly have an important influence in any region
in which physical quantities associated with fermions
change over some relevant length scale.

For the latter viewpoint, curiosity inevitably prompts
the question: what self-consistent solutions can be ob-
tained from the Chern-Simons action as it stands? Do
such solutions represent physics? Or perhaps even more
interesting: are the requirements of gauge invariance and
energy conservation enough to uniquely determine some
universal kind of behavior? If, for example, we computed
the appropriate effective action for Dirac fermions with
an z-dependent chemical potential, would the answer be
comparable to that obtained if we had simply started
from a position dependent Chern-Simons coefficient and
fixed the gauge invariance issue?

It will not be possible to answer this last question in the
present Letter. Instead, the aim will be to use gauge in-
variance to determine self-consistent behavior. The out-
standing issues will be discussed elsewhere.

Sharp junction.—Consider first the problem of a sharp
steplike boundary at r; = 0 separating two regions of
constant y. The variation of the action with respect to
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the field A, yields the field equations and appropriate
boundary conditions for the system

O EF,, + ey pn 8P A = 0, (2)
A[~—F1,\ + %ueuuA“] =0. (3)

A represents the change of a given quantity across the
boundary at 1 = 0. In component form,

AB - $ApA® =0, (4)
AE; + ApA* = 0. (5)

Note that the field has been assumed continuous through
the boundary. As remarked in [7] this condition would
be too restrictive in general since one might conceivably
have a contact potential between the regions.

Although the boundary conditions are not gauge in-
variant, it is possible to extract gauge invariant results.
A simple calculation shows that if one chooses E = 0 on
the boundary then all is well. More generally (0" p)F, =
0 assures gauge invariance. This condition is not very
interesting in the static case since it simply implies that
one must have perfectly reflecting boundary conditions;
i.e., there is no contact between the regions. To obtain
more interesting gauge invariant solutions more variables
are needed [7].

If one examines the change in the Poynting vector par-
allel to the surface AS; = E;AB, for example, it is seen
that it is nonzero. In other words, energy is not con-
served in passing through the barrier. AS; is not con-
served either, but the contributions do not cancel. Since
AB and Ay are related for any Ag through the boundary
condition, it would seem that the difficulty is really that
energy is not conserved. In a classical, descriptive the-
ory this situation can be dealt with in a gauge invariant
manner (7] either by the introduction of sources or time
dependence.

It is noteworthy that the nonconservation of energy ex-
presses something which might otherwise have been qual-
itatively obvious, namely, that such a sharp boundary
would most likely not represent a situation of thermody-
namical equilibrium. At the simplest level, particles on
either side of the boundary would have different masses
(1-3]. The pressure on either side of x; = 0 would there-
fore be different [7].

Finite thickness.—To avoid some of the conceptual dif-
ficulties of a sharp boundary and also to generalize the
discussion somewhat, we shall now consider the following
action:

L=-3F"F,, +iu(x)e,mA 0P A + f(z)J4A,. (6)

This action should be general enough to obtain gauge
invariant solutions. J§ is an external source which can
be used to balance the energy or gauge invariance equa-
tions. The function f(x,t) acts like a membrane of vari-
able thickness which mediates the contact between the
Chern-Simons system and the source. Under the trans-
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formation 4, — A, +9,6, the action S = [ dV L changes
like
% = V%{auﬂ(z)}fvw\ap*‘p Eauf(’l‘)}‘]g' 7)
where I have assumed that u(x) and f(z) are gauge in-
variant. For simplicity the spatial variation of u(x.t)
and f(x,t) is purely in the z; direction. Invariance of
the action then requires that
1, 0u af af o
-‘—éBE“Q‘E ',(,E:*JQ'(()—;*-]]‘H—T‘]— b)
We should be duly wary at this juncture. Equation (8)
relates the Chern-Simons coefficient to the dual of the
field tensor. Since the derivatives act on y it is natural
to solve this equation for p as a function of the field com-
ponents. But in doing this we are introducing “higher
derivatives” into the theory. The resulting action is not
really of the Chern-Simons form any longer. This is a
clear indication that the original action was only valid
for constant u. Gauge invariance is telling us that higher
derivatives are needed. Of course, we could choose to
retain p as the given quantity and eliminate E2 and B,
though this might be considerably harder to implement.
One assumes that the same answer must result in either
case.

In order for f(z;,t¢) to fulfill its purpose satisfactorily.
it must satisfy certain boundary conditions. First, as
Oup(z1,t) — 0, we must have f(z1,t) — 0 to reinstate
normal conservation laws for constant p. Also f(z;.t) =
0 when E? = B = 0, so that the extra terms become
unnecessary in the special cases which are already gauge
invariant. Consider two simple instances of Eq. (8).

(i) If p(x,t) is a time-dependent variable the external
source term is not formally required in the z-dependent
region. In that case Eq. (8) is separable and in the
varying region has a solution of the form

w(zy,t) :H+uoe_73‘e?"m_“‘\’ (93

for constant E?, B. [This equation has infinitely many
nonseparable solutions of the form u(E;'x; — B~'t)
when E? and B are constants, but for nonconstant fields
separability is an issue. See below.] Here v is a real
separation constant and 7, ug, To are to be fixed from
the boundary conditions. If the fields E? and B are not
constant in space and time, but are themselves separable
functions then setting u(x1,t) = h(t)g(z,) gives that h(t)
and g(z) satisfy Langevin’s equation. The equation for
h(t), for example, takes the generic form

adh—(t) + bh(t) = F(t), (10)

dt

where F(t) is defined through the Taylor expansion of the
electric and magnetic fields. This clearly has the solution

T
h(t) = a/ dTe%(T_t)F('r) + hge~at. (11)
0
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The behavior will essentially be diffusive, exponential de-
cay type behavior, modulated by the form of F(t).

In either case the gradient of the Chern-Simons term
diffuses away until it reaches some constant value. This is
rather typical of the coarse-grained, diffusive behavior of
thermodynamic quantities outside of equilibrium, which
is suggestive in view of the energy arguments of the pre-
vious section. In a system which possesses asymptotic re-
gions of constant y, the form of u(x) must clearly yield to
the relevant boundary conditions in those regions. This
will almost certainly preclude constant E; and B and re-
quire the diffusive behavior of Eq. (11). On the other
hand, in an infinite, one-dimensional system with con-
stant F, and B longitudinal waves or any other kind of
normalizable behavior is allowed.

(ii) If we wish to sustain a time-independent gradient in
4 then we must include a nonzero coupling to the source
Js. Note that, in general, f(x,t) will be time dependent
even though u is not, but for constant E2 a solution which
satisfies the above boundary conditions may be written
fz1) = %%, for some constant «. Substituting into
Eq. (8) we obtain

Viu(ar) = DAY, (12)
-(%—FDf(l‘l) =0, (13)

where D = E?/aJ;. Equation (12) resembles a diffu-
sion equation and Eq. (13) is manifestly the exponential
decay law.

In order to obtain field equations satisfying this restric-
tion we must use this equation in two ways. First, it is a
restriction on the values of the related quantities. Since
the derivatives act on p it is natural to regard this as a
restrition on u, though there is a certain amount of am-
biguity here. A self-consistent solution is required. The
second thing we must do with Eq. (8) is to impose it as
a condition on the variation of the fields A,. Since the
equation is an A,-dependent function, the variation of
this condition must vanish.

Field equations.—The next step is to determine the
field equations. In general this will be a rather difficult
problem, since p will be a nonlocal function of the field
strengths. We shall consider only an example. In the spe-
cial case in which E; and B are both constant throughout
the (x1,t) varying region, solutions are straightforward
to obtain. The Bianchi identity 82FE; = 0 coupled with
the constant field condition implies that all quantitities
are now T, independent. The gauge invariance condition
is satisfied by an arbitrary function of the combination
Y¥(E5'z1 — B~1t). The only nontrivial, nonsingular so-
lution to the variation of the gauge invariance equation
is given by 6A; = 0. Using this, one finds that éu = 0.
The field equations for the remaining components of A,
are then
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8, F* + u(z)B + 1(811)A2 = 0, (14)
0, F* + u(z)E2 — 1(Bop)A2 =0. (15)
Combining these leads to
E3(81E1) + B(6:E1) =0, (16)
which clearly has the general solution
E, = E\[y(E;'z; — B™t)). (17)

From Eq. (5) it seems natural to choose E; o u. As
noted above, the situation of constant E, and B is a
very special case. If we have as a physical picture a region
of varying p in between regions of spatially constant u,
then Eq. (4) suggests that the magnetic field should also
have followed the contour of u. Because of Eq. (11),
such a solution would again have to be implemented self-
consistently. It is only speculated here that, owing to the
form of Eq. (11), decaying gradients in all the fields will
be the natural outcome in general. The generalization
for nonconstant F5, B will be pursued elsewhere.

In connecting E2, B, and u we have eliminated the
dependence on u as a free parameter. One sees that its
spacetime variation must be in accord with the changing
value of the field. Only the constant multipliers pg and v
survive as free scales in the theory. To proceed one must
specify the variation of F3, B, or u in a self-consistent
way. From Eq. (4), one might perhaps expect “natu-
ral” behavior to result from B « y in a region varying
between flat regions (a junction). The problem becomes
one of specifying boundary conditions.

It would be interesting to push this idea of self-
consistent behavior based on gauge invariance (and
boundary conditions) to see just how far it leads. Of
course, this might be a dead end and it might lead to
some kind of universal behavior. A more geometric anal-
ysis of Eq. (8) could help here. The diffusive type of
behavior found here might only be a special case but it
is an appealing physical notion which seems to elevate
u from the role of being purely a mass or statistics pa-
rameter to being a thermodynamical quantity, that is, a
continuous classical field which flows so as to reach some
final constant value. This would be of importance in a
wide range of physical systems involving parity breaking.
The solutions described in this short Letter are of a gen-
eral nature but it is possible that the idea could be put on
a firmer basis in the context of some particular system.
Since the Chern-Simons coeffient for fermions at finite
density is a function of the chemical potential, it would
not be unnatural to construct a model like a p-n junction.
This work is in progress. A different though nevertheless
interesting situation in a quantized theory was discussed
in Ref. [8] where a gauge variant parity breaking term was
discussed. There the resolution to the lack of invariance
was to compute nonperturbatively. Clearly this is not
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the resolution to the problems in this work, but a further
investigation might lead to some clues which could help
here. It remains to be seen how the present model would
respond to being quantized. It is emphasized, however.
that the behavior descibed in this Letter is purely at the
classical or “effective” level. The message of the present
Letter is that a position-dependent Chern-Simons term
naturally leads to nonequilibrium behavior even at the
classical level.

Finally, it is interesting to remark that the Chern-
Simons coefficient is normally quantized for non-Abelian
gauge fields [1,3]. This requirement is rescinded if p is a
varying field. However, in asymptotic regions for which
1 is constant it would have to be quantized according to
the usual conditions. This leaves open several interesting
lines of investigation.
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