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Failure Probability and Average Strength of Disordered Systems
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Using a new recurrence-relation method, we have calculated the failure probability and average
strength of random systems of up to linear dimension L 5000. We find a deep minimum in the failure
probability at an optimal sample size (L0). As the applied stress decreases the depth of this minimum

gro~s exponentially and Lo increases algebraically. At large sample sizes the average strength exhibits
a logarithmic size effect, in contrast to recent suggestions of algebraic scaling in related models.

PACS numbers: 83.50.Tq, 05.20.—y, 61.43.—j, 62.20.Mk

The tensile strength of materials is usually orders of
magnitude weaker than that expected from the strength
of the atomic bond. The reason for this reduction in

strength is that defects, such as cracks and dislocations,
nucleate and cause fracture at applied stress levels far
below that of a defect-free system. A related effect is

that the average strength of materials often shows a size

effect, in which larger samples have lower fracture stress
than smaller samples. Thus extremely strong fibers and

whiskers exist, but it is very difficult to make larger sam-

ples with similar strengths. The size eA'ect in material
strength is closely related to the fact that tensile fracture,
hnd failure in other contexts, is often a heterogeneous nu-

cleation problem, in which the failure instability initiates
in an especially weak or highly stressed part of the ma-

terial. The observed properties are thus dominated by
rare or extreme fluctuations in the geometry and stress
field in the materials. A similar dependence on rare fluc-

tuations has recently been suggested in the depinning of
charge-density waves.

New insight into the interplay between disorder and

failure has followed the development of numerical algo-
rithms to simulate these processes [1], and scaling
theories which explicitly take into account the depen-
dence of failure on rare fluctuations [2] (for the applica-
tion of similar ideas to charge-density-wave depinning see
[3]). Because of the anomalous nature of the fluctua-
tions, it is important to study the appropriate distribution
functions, and here we concentrate on one key distribu-
tion, the failure probability. However, the algorithms
available for spring and electrical networks are quite slow

computationally, and are not able to convincingly test the
asymptotic ftnite size scali-ng fo-rms for the probability of
failure or the average failure strength. We have thus in-
vestigated a simpler chain of bundles model (se-e b-elow)

for the failure of heterogeneous networks, and have com-
pared the results of these calculations with new simula-
tions of L &L square-lattice fuse networks of up to size
L 100. Despite its simplifications the chain-of-bundles
model is still extremely complex, and thus far a sophisti-

cated transition-matrix method has been most useful in

analyzing its behavior [4]. However, this transition-
matrix method does not allow a complete study of the key
finite-size-scaling behavior. We have thus developed a

powerful new recurrence relation for the failure proba
bility and using this recurrence relation we are able to
calculate the failure probability and average strength for
lattices of up to L 5000.

Consider a square lattice in which each bond of the lat-
tice is assigned a strength (e.g., tensile strength, critical
current, etc. ), where for concreteness we discuss in detail
the case of a uniform distribution of bond critical cur-
rents extending from the origin to a width W. Prior to
failure, all bonds have the same transport modulus (e.g.,
spring constant, conductance) where for concreteness, we

take the case of an electrical system of conductance g.
When a bond has failed, its transport modulus is set (ir-
reversibly) to zero. An external current is injected into
the lattice, and if the current is sufficiently high, the
whole network will fail. At sufficiently low applied
current, some of the bonds in the network fail, but the
network eventually stabilizes with a flaw population gen-
erated by the failure process. The lowest applied current
for which the system undergoes complete failure is the
critical current (similarly for the critical stress). Doing
many configurations leads to a probability distribution,
F„(i),which is the probability that at applied current-i a
sample of size n ( L ) will fail. As in our earlier simu-
lations of the diluted fuse network [2], we use the
conjugate-gradient technique with an accuracy of 10
for the squared residual.

In some high-strength fiber-reinforced composites [4]
the failure behavior is well described by quasi-one-
dimensional models which consider only linear cracks. In
fact, these chain of bundles m-ode-ls have been very suc-
cessful in describing both the current distribution [5] and
failure properties [2,4,6] of higher dimensional systems.
For example, to model a two-dimensional L„xL~ square
lattice, we divide the square lattice into a chain of L„1D
models like that in Fig. 1. The restriction to linear cracks
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FIG. l. The one-dimensional model after some bonds have
broken. A bracket indicates the failed bonds which contribute
to the current or stress enhancement at the surviving bond in-
side the bracket.

is equivalent to assuming that the current injected into
each of these I D models is the same, and that each bun-
dle (ID model) is independent of all the others. If we

define the failure probability of one bundle to be fL, (i)
[its survival probability is sL, (i) =I fL (—i)], then the
failure probability of L~ such bundles in series (the
chain-of-bundles model) is simply F„(i) = I

—[I
—fL (i)] ". The difficult part of the analysis is to calcu-
late fL(i), and this is the quantity we calculate using our
new recurrence relation method.

A key input in these ID models is the amount of
current or stress enhancement which occurs in surviving
bonds which have neighboring failed bonds (e.g. , the
bond marked with an & in Fig. I). The local-load-
sharing rule which we use is il, =i(I+k/2), where i is

the applied current per bond and ik is the current in a

bond surrounded by k failed bonds (e.g. , for the bond

marked x in Fig. I, IL 3). This law has been extensively
used in modeling composites (with i replaced by applied
tensile stress [4]), and is consistent with results for 2D
resistor networks where a similar current enhancement

[up to In(k) corrections] occurs when two cracks are
close to each other [2].

To analyze the one-dimensional model of Fig. 1,
let a {1 } denote a surviving bond and a {0} denote a

failed bond. Then for L 2, the survival configura-
tions are {11,10,01}. For arbitrary L, there are 2 —I

survival configurations and one failure configuration
{00000.. . 000}. The probability that a bond survives

when it has k failed neighbors, Wp, is given by

Wq =I —fot' ~ 'p(i')di', where p(i) is the differential
failure probability of a bond [e.g., for a uniform distribu-
tion we use p(i) I/W for 0~i (W]. It is then

straightforward to write down the survival probability for

each survival configuration on a lattice of size L in terms
of Wl and Ii [ f~(i)], with I (L (e.g. , for L =2, the sur-

vival probabilities are Wo, Wlfl, Wlfl ). Although we

can then calculate the failure probability of systems of
size L using data on smaller systems (e.g. , f2=1 —Wo
—

2 Wl f l ), this algorithm is slow as it scales as the num-

ber of survival configurations (i.e., as 2 ). We thus

developed a more e%cient recurrence relation.
To develop this method, we separate the full set of

2 —
1 survival configurations into judiciously chosen sub-

sets. Let a lone aber be a surviving fiber which is sur-

rounded by failed fibers (e.g. , the fiber marked with an x
in Fig. I). Then, let jh} be the set of all survival

configurations which contain only failed fibers and lone

fibers, and which are bracketed at both ends by lone
fibers. The small L members of this set are {101,1001,
10001,10101, . . .}. {B}is the same set as {A},with the
exception that one (specified) end of the configuration
must be failed. The small L members of this set (for the
case where the left end is failed) are {01,001,0001,
0101,00101, . . .}. There is a complementary set to {B}
which has the same probability but which has the failed

ending on the right. The generating functions for {8}
(see below) and its complement are the same, so we do
not distinguish between them. {C}is the same as {A}ex-

cept that both ends have failed. The small L members of
this set are {010;0100,0010;01010, . . .}. Finally, we

define jp} to be the set of configurations which contain no

failed bonds j( ), 1,11,111,1111,. . .}, where ( ) is the

empty set. Associated with these classes of survival

configurations are the generating functions,

f(z) = —s(z),1

1
—z

(3)

where we have used fo=0, so= I, and f(z) =gqfLZ
Combining Eqs. (1)-(3),we get the key generating func-

tion equation,

A(z)=+A z, B(z) g 8 z, C(z)-g C z',
L 3 L 2 L 3

where AL, BL, and CL are the sums, respectively, of the
survival probabilities of the sets {A},{B},and {C}of fixed

sample size L. The generating function for the set jp} is

p(z) = g (W,)'z'= 1

p 1
—Wpz

Some study [7] shows that the generating function for the
survival configurations s(z) =QLsLZ is related to A(z),
8(z), C(z), and p(z), so that

+ [1 +8(z)]p(z) [1 +8(z)1
I —p(z)W (z)

It is also true that

fL = I SL—
implies

(I —z) [I +8(z)] —[I —Woz —A(z)] {I—(I —z) [f(z)+C(z)]}=0. (4)

We then expand this identity in powers of z and by setting the coeScient of the z term to zero we find the recurrence

relation

L —4

+L +L —l + WO~L —I+—2&LB —~L +fl~L l 828L 2+ Z (~-m+2~L —m —2—+ Bm—+ l~L m 18) ~ (s)
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where XL fL+CL, and VL Y YL —YL i. To imple-

ment this recurrence relation, we need expressions for the
survival probabilities AL, BL, and CL. We have also
found recurrence relations for these probabilities. This
we have done by defining the subset, [cL i} of [C},which

is the set of survival configurations of length L which

end with exactly i failed bonds. For example, [c7,2}

[0010100,0100100}. Similarly, we define the subset
[bL i} of [B} and the subset [aL,(} of [A}. The survival

probabilities of these subsets are then related to the sur-
vival probabilities of subsets of shorter length via the re-
currence relations
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Finally, we find AL, BL, and CL by summing over i (for
example, AL g(aL(). Equations (5)-(8) are the exact
recurrence relations for the failure probability [fL(i)] of
the 1D model, and the time required to evaluate them
scales at most as L . In fact, in the case of distributions
which have an upper cutoff (such as the uniform distribu-
tion), it is possible to reduce the computations to a num-

ber which scales as L (at hrge L). Brute-force calcula-
tions are restricted to systems of order L 20, while with

the recurrence relations above, we have studied systems
of up to L 5000 on a Sun workstation.

Results for the size dependence of the failure probabili-

ty for fuse networks and for the chain-of-bundles model
are presented in Fig. 2. For high applied current, the
failure probability increases monotonically with system
size, but for low values of applied current it shows a deep
minimum at an optimal sample size, which we define to
be (Lo). It is not possible to probe this minimum fully
for the fuse network, as this would require many
thousands of configurations on sample sizes much greater
than L 20. Nevertheless, the data in Fig. 2(b) for
i/W 0 05 clearl. y show the rapid decrease in failure
probability characteristic of the onset of the deep
minimum in Fig. 2(a). For the uniform distribution it is

possible to estimate the location and depth of the proba-
bility minimum as follows. Since the distribution has
width W, and the current enhancement in a bond obeys
ik i(1+k/2), there can certainly be no cluster of failed
bonds of size greater than Lo, given by W i (1+La,/2),
which implies Lo, 2W/i —2. Once a sample exceeds
this size, the number of survival configurations no longer
increases at the same rate, and so (roughly) we would ex-
pect the failure probability to increase. The data for the
chain-of-bundles model is broadly in agreement with this
behavior. In the regime prior to the minimum in Fig. 2,
the effect of local stress concentrations is relatively weak,
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so the failure probability can be estimated by assuming

uncorrelated bond breaking, which gives fL(i) —[fl(i)]
(i/W) For s.mall i/W, the depth of the probability

minimum Fm;„can thus be estimated by replacing L
in this equation by Lo which gives Fm;„-1 —[1
—(i/W) '] ' Using . Lo-W/i and dropping constant
factors yields Fm;„-(i/W) ('. Although this argument
overestimates the depth of the probability minimum, it

indicates that as i/W approaches zero, Fm;„approaches
zero exponentially, as observed in the numerical data.
This probability minimum can be expected in other ran-

dom systems (e.g., we have checked that it occurs in sys-

tems with a Weibull distribution of local failure thresh-
olds [7]) and is an important feature of these problems
which has been previously inaccessible to direct calcula-
tion. It also raises the intriguing possibility of designing
materials and structures so that they are used near this
minimum, with a consequent minimization of their proba-
bility of failure.

The average strength of fuse networks and of the
chain-of-bundles model are presented in Fig. 3. It is seen

that the data appear inconsistent with an algebraic size

FIG. 2. The size dependence of the failure probability. (a)
Data for the chain-of-bundles model. We used F, (i) 1
—(1 —fL)L with n L2, where fL is found using the
recurrence-relation method. (b) Data for the fuse network, for
L&L square lattices using 5000 realizations at each value of
L 1-20. In both figures, starting from the top the data are for
i/8' 0 2, i/W . 0 1, and i/W. 005.
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effect both for the chain-of-bundles model and for the
fuse network. If we do fit the fuse network data from
L 10 to L 100 to an algebraic law, we get an exponent
of about —0.1 as found in previous work using data on a
restricted set of sample sizes [8]. The data for the
chain-of-bundles model (solid line in Fig. 3) are quite
close to the form (1+k lnL) ' over a broad range of sys-
tem sizes. The fuse network data (dotted line in Fig. 3)
can be fitted to a size effect of the form [1+k(lnL)']
with —,

' (a(1 as suggested by scaling theories [10].

FIG. 3. The average critical current of heterogeneous sys-
tems with a uniform distribution of local-failure thresholds.
Data for the chain-of-bundles model ( ) and for the
random-fuse network (---). Data for the chain-of-bundles
model are exact to the resolution of the figure. The fuse-
network data are found from an average over 5000 config-
urations for L 1-20, and an average over 25 configurations for
L 30, 40, 50, 60, 70, 80, 90, and 100. (a) Test of algebraic
scaling and (b) test of logarithmic scaling.

However, the numerical data for the fuse network are not
sufficiently accurate and extensive to convincingly distin-
guish between an algebraic law (with a small exponent)
and a logarithmic law at large sample sizes. Neverthe-
less, the fact that scaling arguments [9,10) and the results
for the chain-of-bundles model support a logarithmic law

make it likely that logarithmic scaling is correct for the
fuse network. Since these arguments also apply, with

only notation changes, to the tensile failure of beam and

spring models fl I], we suggest that those models also ex-
hibit a behavior like that found here.
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