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Dynamics of Self-Replicating Patterns in Reaction Diffusion Systems
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Recently solutions to a simple reaction diffusion system have been discovered in which localized
structures (spots) make copies of themselves. In this Letter we analyze the one-dimensional analog
of this process in which replication occurs until the domain is Glled with a periodic array of spots.
Vfe provide a heuristic explanation of why this replication process should occur in a broad class of
systems. Time dependent solutions are developed for model systems and their analytic structures
investigated.

PACS numbers: 82.40.Ck, 87.40.+w

Over the past three decades the study of self-
organization in far-from-equilibrium systems has become
a major field of scientific inquiry. Within this field, the
study of chemically reacting and difFusing (RD) systems
has attained the status of paradigm. Although there are
many reasons for the role that RD systems play, perhaps
the most compelling is their obvious relevance for biolog-
ical systems.

Recently, Pearson [1] has observed spot patterns in a
RD system that replicate themselves until they occupy
the entire domain. This observation was made during
a successful attempt to reproduce the labyrinthine pat-
terns observed in [2]. In this Letter, we will look at this
model system in one dimension and derive several ana-
lytic solutions to the nonlinear partial difFerential equa-
tions, including replicating spot structures. The model

[3] is given by

dt
=7' u —uv +A(l —u),

—=b V v+uv —Bv.
OV 2 2 2

dt

Here u(z, t) and v(x, t) are fields representing the concen-
trations of two chemical species with difFering difFusion
coefficients, whose ratio is 62. A and B are parameters
describing a feed from an external reservoir with the fixed
concentrations u = 1 and v = 0.

One of the most interesting structures observed by
Pearson in 2D simulations consists of localized regions of
high v and low u concentration, "spots, " surrounded by
regions where the concentrations are nearer to the kinet-
ics' only fixed point: u = 1, v = 0. The spots replicate:
a single spot first divides into two new spots, which then
separate until another replication occurs, finally filling
the entire domain. Typical asymptotic configurations in
these 2D simulations depend on the parameters and con-
sist of either chaotic states in which the spots compete
for territory in a continuous process of replication and
death or steady states where the spots form a hexagonal

pattern.
In 1D, an analogous situation is realized for small

enough b, although the time asymptotic state is always
static in a finite domain. Figure 1 is a space-time plot of
v for this case. Related phenomena have been observed
by other authors [4]. In particular, Kerner and Osipov
have derived numerous results on self-organization pro-
cesses in active media including an analysis of the static
division of one-dimensional pulses as the system size is
changed.

Recently, replicating spot patterns have been observed
experimentally in a RD system [5]. This occurs despite
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FIG. 1. A space-time plot of v. Regions where v does
not vary have been omitted for clarity. Note the repeated
replication until a steady state is reached. Inset: A plot of
both u and v for two spots. For this simulation, A = 0.02,
B = 0.079, and b = 0.01. A grid of size 500 was used with a
lattice spacing of 0.2.
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the obvious differences in the kinetic details of this sys-
tem and (1). This fact suggests that replication is very
common, characterizing a broad class of RD systems. In
this Letter, we present some arguments in support of
this proposition, including a heuristic description of the
process of replication and demonstrations of analytic fea-
tures common to several related model RD systems.

One can understand spot formation heuristically. We
consider a 1D spatial domain fed with a highly motile,
flammable fuel. If this fuel becomes sufficiently hot, the
autocatalytic process of burning commences. We further
assume that flames spread (diffuse) much slower than the
fuel [6]. If a small region is ignited, a local depletion of
the fuel occurs. Therefore, gradients are created that
induce a lateral flux of fuel into the spot. Thus, the fuel
is funneled into the spot from the unignited, "quiescent"
regions that surround it.

The fate of an ignited spot depends on the lateral dif-

fusive flux of fuel into it. If this flux is small enough,
the system can sustain a steady, localized region of high
temperature. As the fuel flux increases, the spot grows.
This situation can arise if either the external feed in-

creases, or if the size of the quiescent regions around the
spot increases. At some point, the width of the spot will

become so large that the flux of fuel into the spot's center
will become too low to sustain the autocatalytic reaction
there. Under these circumstances, the center of the spot
will collapse, creating two spots where before there was
one. We refer to this process as "replication. " The two
spots will now move away from one another as they try to
accommodate the fuel flux from the quiescent zones. The
region between the spots, which increases in size as the
spots move apart, will gradually approach the quiescent
state, causing the flux into the back of the two coun-

termoving spots to increase. This increase can induce a
secondary splitting in the traveling spots.

We should emphasize that an element crucial for repli-
cation is the ability of the spot to autocatalytically con-
sume as much fuel as is provided it, since this depletion is
at the heart of splitting. RD models of excitable media,
such as the Fitzhugh-Nagumo and Qregonator models

[7], do not possess this feature, since their autocatalytic
kinetics saturate at some high value of the temperature.
This limits the amount of fuel they can consume, and
prevents the central collapse characteristic of splitting.
The Selkov model of glycolysis [8], which also exhibits
replicating spot patterns, is similar to these others in
that it does possess a limiting burning branch; however,
this branch is located at such a high level of temperature
that, over some parameter regime, the entire burning-
depletion-collapse cycle occurs well below it.

We can identify each term in (1) with an aspect of our
heuristic description. For (1), v plays the role of fire or
temperature and u of fuel. The term A(1 —u) represents
the uniform feed of fuel throughout the domain. The
term —uv2 represents the depletion of u as the tempera-
ture is increased, —Bv the coupling to the thermal reser-

voir, and +uv the autocatalytic production of heat. For
values of v below the autocatalytic branch (uv —B = 0)
the kinetics relaxes back to u = 1, v = 0. For v above
this branch, autocatalytic "burning" commences [6] and
as u is depleted, eventually v will be pulled back below
the branch, returning to its steady value.

These qualitative arguments do not depend on a spe-
ci6c set of kinetics. If we replace the term —uv in
the first of (1) with —v, we obtain the so-called "linear
model. " The new term still reflects the depletion of fuel
with increasing temperature and this model also exhibits
the phenomenon of replication. For the linear model, the
singular perturbation analysis we develop in this Letter
carries over directly; however, for other models, e.g. , the
Selkov model, this analysis does not apply.

We now turn to analytic solutions of the system (1)
that correspond to the evolution observed in Fig. 1. We
can construct these solutions in the singular limit b —+ 0.
The simulations show that the spatial domain is divided
into "inner" or spot regions of width G(b) and "outer"
regions of width G(l) (see Fig. 1). In the inner regions
v b i and u ~ b, while in the outer regions, v is
transcendentally small and u is of order 1. There are two
characteristic time scales. The spots evolve slowly over
long time intervals that are punctuated by replication
which occurs on a fast time scale. The solutions which
we construct are valid only during the long slow intervals
but they do predict when and why replication occurs.

In both the inner and outer regions we introduce the
slow time r = b~Bt. The following rescaled variables are
appropriate in the inner regions: u;„= b~B) iu, v;„=
~v, and x;„=

& [x —x (r)], where x is the location
of the minimum of u in the spot under consideration.
We define c(r)—:dx~/dr as the rescaled velocity. In the
outer regions we set v = 0, u = u,„~ and do not rescale 2:.
With these scalings, the evolution equations (1) reduce
to

B u";"'+ A(1 —u.„t) = O(b)

in the outer regions and

2
z" —u;„v,„=g(b),

+in

B v
,'" + e(r) '" + ui.v. —vi~ = &(b)

Bx; xin

in the inner regions, which we solve as power series in
6 [9]. Note that to leading order in b, the feed of u drops
out of (3). This is consistent with the spots being main-
tained solely by the LateraL difFusive flux of jueL from the
surrounding outer regions. Also note that with this scal-
ing Bzu; /Bx~„& 0. Thus, it is clear that we cannot
describe pulse division of the u;„Beld. However, repli-
cation is always preceded by the v;„Geld developing a
dimple and this feature is retained with the current scal-
ing. The fact that the explicit time dependence scales
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out of the system in both the inner and outer regions
means that the variation with w is adiabatic; thus the
time dependent quantities in the problem are treated as
constants.

We obtain a single spot solution to Eq. (1) in the do-
main [x,x+ ], where xM and x+ are the locations of
two successive maxima of u. The resulting solution can
be used to construct an array of moving spots on a larger
(possibly infinite) domain. Static solutions correspond to
the particular case c = 0. Since u has only one minimum
in [zM, xM+], the interval is divided into three regions: the
outer regions to the right and left of the spot, and the
inner region centered at x~(v).

The solutions in the different regions must go smoothly
into one another. Thus the G(1) terms in the left and
right outer solutions, u «and u~+«, must be zero where
the outer regions meet the inner, i.e., at x x . Thus
the solutions in the left and right outer regions can be
written

u+«(z, 7.) = 1 —u+ cosh[v A(x —z~ )], (4)

where u+ = sech[~A(x —x~ )].
As we approach the spot, we find from these equations

that u+„, kL+«(z —x~), where

L,+„, —:v A tanh (v A~x+ —z ~)

are the difFusive fluxes of u into the spot. Note that if
z~~ ~ Woo, then L,+„, = ~A.

We determine solutions to Eqs. (3) that are consistent
with the outer ones as x;„~koo. This implies the be-

as z;„~ +oo. These behaviors are consistent with (4)
in the limit x —x + 0+. By unsealing the inner vari-
ables, we find that u = v;„b~B ~ +BL;+„(x—z~) +G(b)
and v = "'"&~ is a transcendentally small quantity as
x;„~+oo. Matching gives the relation L,+„=BL+„~.

For a given pair of fluxes, L+, L,„, there are five un-
knowns characterizing the solutions: v+, M+, and c.
Using the asymptotic behaviors as initial conditions, we
integrate Eqs. (3) to z;„=0 from x;„~+oo. We require
continuity of u;„, v;„and their derivatives, and impose

0 = 0, which breaks the degeneracy due to the
translational invariance of (3). This gives five constraints
on the five unknowns as functions of the fluxes L+ and

L;„. In general, we expect a discrete set of solutions for
given values of L,.„. This is consistent with our heuris-
tic picture: once we know the amount of fuel that it is
being fed from its sides, the structure of the spot can be
determined.

We plot the velocity in Fig. 2. Although many so-
lutions were found numerically, corresponding to multi-
bumped v;„(x;„),we only consider those observed in sim-
ulation, the single and double bumped solutions. The
surface, c(L+,L,„), has two sheets t. hat intersect along
the line L+ = L,.„(L„where L, is some critical value.
Along this line, the two solutions consist of either sym-

c( &-,„,L+,„)
0.4'
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FIG. 2. A plot of the function c(L+, L ). All axes have
dimensionless units.

metric single or double bumped spots, both with c = 0.
The single bumped solutions are linearly stable and the
double bumped unstable. These two branches collide and
disappear at L;„=L,. We have also observed this dis-
appearance in the full system (1). For small enough 6
we have continued its static solutions finding the same
value L, as predicted by the perturbation theory. These
static solutions are identical to those discussed by Kerner
and Osipov [4]. If one starts on one of the static inner
solutions and continues it in the L,„, L;„plane, around
the singularity at L, one arrives at the second static so-
lution. Hence, the two sheets represent single and double
bumped solutions which go smoothly into one another.
The solutions disappear as L;„ is increased. For this case,
it appears that the c sheets in the L+, L,„plane are
colliding with another sheet of solutions, although our
numerics cannot confirm this. This disappearance corre-
sponds to replication.

Given that c = "&, the function c(L+,L;„) together
with the relations (5) determine the evolution of our spot
solution. If we solve for an array of N moving spots,
located at x;, then the locations of the maxima of u, xM,
0 ( i ( N are functions of 7 related to their adjacent
minima by xM = (z~+i + x~)/2. The dynamics of the
x, 's are determined by

x = G(L+, L, ), (6)

where the fluxes L,+. , 1 & i & N are functions of x~+~ —x,
and z~ —x~ i, via a generalization of Eq. (5). The
fluxes at the ends of the domains are determined from the
boundary conditions. Equations (6) can be integrated
forward in time while all the functions c(L, , L,. ) exist
for the given set of fluxes. If at some time c(L+, L, ) no
longer exists for a spot, then that spot replicates. Af-
ter this occurs, the new configuration can be used as an
initial condition to integrate Eqs. (6) up to the next split-
ting.

We have compared the solutions obtained in this way
with the numerical simulations of the full system (1),
finding good agreement in the shapes of the pulses and
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the value of the velocity. We have also verified that the
spot's splitting occurs when the fluxes into it are such
that the inner solutions disappear. Finally, we have cal-
culated the linear stability of these solutions. We find
that many of the traveling solutions that are observed
in simulation (in particular those that are developing a
second bump in the v field) are linearly unstable. We
conclude that nonlinear efFects must be restabilizing the
spots, which persists until their dynamics actually carry
them to a point where the solution ceases to exist —at
which point replication occurs.

Is it reasonable to expect that the structure of the func-
tion c(L+, L,„) should also be characteristic of a broad
class of models? To check this proposition, we have ap-
plied the same analysis to the linear model, where we

find the same type of structure for the selected velocity.
We believe that the double sheeted nature of the surface

c(L,+„,L;„) is in some sense a "fingerprint" of replication,
and should be amenable to more general analytical ap-
proaches. In particular, we surmise that the analytic
structure of the singularity at L+ = L,.„=I, is char-
acteristic of all of these structures. We do not yet have

an analytic formulation for the solutions in the neighbor-
hood of this singularity. Verification of this proposition
is a subject of future research.

From the physical point of view, the analysis presented
here is crude. In most experiments the ratio of diffusion

coefficients is much closer to unity. However, the singular
limit presented here clarifies which physical processes are
dominant as the system evolves. An analysis for b close to
but greater than 1 would be of interest. In higher dimen-

sions the necessary analysis is far more delicate as can be
seen from the fact that in our analysis the parameter B
scales out of the problem and in [1] the solutions depend
strongly on the values of A and B. The role that curva-

ture plays is clearly nontrivial since the coupling between
the spot and the outer regions is curvature dependent.

In closing we comment that the fuel and fire picture
also provides an understanding of the Turing patterns
which bifurcate off of the uniformly burning branch. In-

deed it is possible to view spot replication as the dy-

namical mechanism by which Turing patterns spread for

parameter values well beyond onset. Near onset, hexago-
nal patterns that nucleate locally spread by spot replica-
tion [10] until the domain is filled with small-amplitude
static hexagons. The fuel and fire picture is equivalent
to the standard activator-inhibitor picture which was de-

veloped to provide an intuitive explanation to elucidate
the mechanism of Turing instability. The fuel is, perhaps

paradoxically, the inhibitor and temperature the activa-
tor.

In order to simplify the analysis of Turing instabilities,
skeletal models were created in which the only steady
state of the reaction kinetics is a nonequilibrium steady
state. The Brusselator [11] is the premier example of
such a model. Clearly, one could relax the set of assump-
tions used in obtaining such models so as to keep the
thermodynamic branch. We expect that most extended
versions of the Brusselator [of which Eq. (1) is an exam-

ple] that keep the thermodynamic branch would exhibit
the phenomena discussed here.
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