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Order-Disorder Transition in a Two-Layer Quantum Antiferromagnet
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We have studied the antiferromagnetic order-disorder transition occurring at T = 0 in a two-layer
quantum Heisenberg antiferromagnet as the interplane coupling is increased. Finite-size scaling of
quantum Monte Carlo results for the staggered structure factor gives the critical ratio J, = 2.51+0.02
between the interplane and in-plane coupling constants. The critical behavior is consistent with
the 3D classical Heisenberg universality class. Results for the uniform magnetic susceptibility and
the correlation length at finite temperature are compared with recent predictions for the (2+1)-
dimensional nonlinear 0 model.

PACS numbers: 75.10.Jm, 75.40.Mg, 75.40.Cx

It was recently suggested [1—5] that the unusual
normal-state magnetic properties of the high-T, super-
conducting cuprates are characteristic of two-dimensional

(2D) quantum antiferromagnets close to the critical point
of a zero-temperature order-disorder transition, with the
disordered phase having a gap towards spin excitations.
It has been argued that the physics of such antiferromag-
nets is described by the nonlinear cr model in 2+1 dimen-
sions [6]. Studies of this field theory based upon a I/N
expansion have resulted in detailed predictions for the
behavior of near-critical systems [1—5]. In order to test
these predictions, it is useful to compare them with exact
numerical results for some appropriate model. The two-
layer Heisenberg antiferromagnet can be tuned through
an order-disorder transition by varying the coupling be-
tween the planes [7,8], and constitutes an ideal system
for such comparisons. In this Letter, the T = 0 order-
disorder transition and the finite-temperature "quantum
critical" regime of this model are studied using a mod-
ification of the Handscomb quantum Monte Carlo algo-
rithm [9,10]. Details of this work will be presented else-
where [11].

The model we study is defined by the Hamiltonian

where (i, j) is a pair of nearest neighbors on a square
lattice, and S, is a spin-z operator at site i in plane
a. With the interplane coupling Jz = 0, the indepen-
dent planes have long-range order at T = 0 [12], and the
spectrum is gapless. For a large ratio J = Jz/Jq, there
is a tendency for neighboring spins in adjacent planes to
form singlets. There is a gap for spin-1 excitations and
no long-range order. A series expansion calculation by
Hida gave a critical coupling J, = (J2/Jq), = 2.56 [7].
A Schwinger boson mean-Beld calculation by Millis and
Monien, on the other hand, resulted in J, = 4.48 [8].

The coupling ratio J is analogous to the coupling g
of the (2+1)-dimensional nonlinear a model. In their
study of this model, Chakravarty et al. [6] identified three
regimes in the T-g plane. For g & g, there is long-range

antiferromagnetic order at T = 0. At low temperatures,
in the so-called renormalized classical (RC) regime, the
correlation length ( diverges as e2 P'~T, where p, is the
spin stiffness. For g ) g„ there is an excitation gap and
the correlation length is constant in the low-temperature
"quantum disordered" (QD) regime. For g g„( T
in the high-temperature "quantum critical" (QC) regime.
Exactly at g„p, vanishes and the QC regime extends
down to T = 0, whereas for 9 g g, there is a crossover to
either the RC or the QD regime as the temperature be-
comes low enough for the deviation from g, to be sensed.
On the lattice, the spins become effectively decoupled as
T ~ oo and there is a high-temperature crossover from
the QC regime to a "local moment" (LM) regime.

The 3D nonlinear 0 model is the appropriate contin-
uum field theory for the phase transition of the 3D classi-
cal Heisenberg model. The T = 0 transition of 2D quan-
tum antiferromagnets is therefore expected to belong to
the universality class of that model, provided that the
o-model description is valid at the critical point [6].

Chubukov and co-workers [2,3] showed that close to
criticality, many physical observables depend in a univer-
sal manner on a few model-dependent parameters. Once
these parameters are determined, the temperature de-
pendence of, e.g. , the wave-vector and frequency depen-
dent magnetic susceptibility is known for temperatures

Quantum Monte Carlo studies have confirmed that the
2D Heisenberg model has long-range order at T = 0 [12].
The low-temperature behavior is consistent with the pre-
dictions for the RC regime [13,14]. It has been argued
that this model is close enough to criticality to exhibit
QC behavior for 0.35 & T/Jq & 0.55 [2,3]. However,
this regime is narrow, making it difficult to verify the
predicted behavior. Introducing frustrating interactions
reduces the long-range order and widens the QC regime.
Unfortunately, frustrated quantum models are difBcult
to study numerically, due to "sign problems" which arise
in Monte Carlo algorithms [15]. The twolayer model -(1)
does not have this problem, and ran be tuned through
the critical point by varying J2/ Jq.

In order to determine the critical ratio J, = (J2/Jq),
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of the two-layer model, and to investigate its T = 0
critical behavior, we have carried out quantum Monte
Carlo simulations of periodic lattices with 2L spins, with
L = 4, 6, 8, 10. In order to obtain essentially ground state
results we chose an inverse temperature P = 48, which
for the system sizes studied is suKcient for all calculated
quantities to have saturated at their T = 0 values. Monte
Carlo moves necessary to ensure ergodicity in the sub-
space with zero total magnetization [Q,S', = 0] were
carried out. We have also investigated the finite tem-
perature properties for various values of J near J,. In
these finite-temperature simulations, Monte Carlo moves
changing the total magnetization were carried out. Sys-
tems with L up to 24 at T/ Ji & 0.3 were studied [16]. For
small systems we have checked simulation results against
exact diagonalization data. At higher temperatures our
results are in good agreement with series expansion re-
sults recently obtained by Singh and Sokol [17].

We have calculated the in-plane staggered structure
factor for coupled L x L planes

Si(L) =
2 ) (Sf,+iSi i)(—1)'*+'"

i, l

(2)

and the full two-plane staggered structure factor

S2(L) =
2 ) ([Si,~i —S2,+,][S, i

—S2,])(—1)-
i, l

and a similar expression for y2.
Two possible order parameters of the phase transition

are the sublattice magnetizations mi and m2 of a single
plane and the whole system, respectively. These can be
defined in terms of the structure factors as

m„(L) = /3S„(L)/nL2

For J & J, the asymptotic T = 0 spin-spin correlation
functions

ci (r)= (sf,+,sf, ) (—1)"*+",

c2(r)= ([Sl,i+a S2,i+rl[Sl, i S2,il)( 1) *

(6a)

(6b)

should have the form

(7)

which gives for the sublattice magnetization

m2(L) = m„(oo)+ k„(1/L)' " (8)

In addition we have evaluated the corresponding stag-
gered susceptibilities yi and y2, with

P

&i( ) =,) ( f„+i( ) f,i(o))(- )'*+'" ( )
t, t 0
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]
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FIG. 1. The sublattice magnetization mi versus 1/L for
J = 2.4 (solid squares), J = 2.5 (open squares), and J = 2.6
(solid circles). The dashed snd solid curves are least squares
fits of the form given by Eq. (8) with rl = 0.03 for J = 2.4
and 2.5, respectively.

Vs = ~(1- rj),

p„= v(2 —g).
(9a)

(9b)

For a quantity A which diverges as j ~", finite-size scal-
ing [19] relates the value AL, for a Finite system to the
infinite-size value A~ according to

Ar, (j) = A (j)f[( (j)/L]. (10)

Equations (9) and (10) give for the size dependence of
S„(L)and y„(L) at the critical point:

S„(L,j =0)-L'
x (Lj=o)-L' ".

(1la)
(11b)

Figure 2 shows results for ln(S„) and In(y„) versus ln(L)
at J = 2.5. If Eqs. (11) hold, the data should fall onto
straight lines with slopes 1 —g and 2 —g, respectively. All

of the Sq results agree well with this form, whereas the
other quantities agree within statistical errors for L & 6.

In order to test whether the exponent v agrees with its
expected 3D Heisenberg value v = 0.70 [18], one can use
the scaling relation (10) for j & 0. Graphing AI, (j)j~"
versus Ij for various J and I should produce points
collapsed onto a single curve. This is indeed the case
for S„and y„ if J, = 2.50. The best overall results are

Exactly at the critical point, we expect that rl is equal
to the 3D Heisenberg exponent rl = 0.03 [18]. Hence,
we have fit our results for m2 to (8) with this q. For
m& the Monte Carlo results agree well with this form
for all L & 4, whereas L & 6 is needed to obtain good
fits to the results for m22. Figure 1 shows m2i(L) versus

1/L for J = 2.4, 2.5, and 2.6, along with least-squares
Fits of (8) to the J = 2.4 and 2.5 data. At J = 2.5 the
extrapolated values of mi(oo) and m2(oo) are both zero
within statistical errors, indicating that the critical ratio
is close to 2.5.

Define a reduced coupling j = (J —J,)/J, . As j ~
0 from above, the correlation length ( diverges as j
and the staggered structure factors and susceptibilities
diverge as j ~s and j», respectively. These exponents
are related according to
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Carlo results [13] for the uniform susceptibility are in

agreement with Eq. (12), although only over a narrow
temperature regime [2,3], whereas the inverse correlation
length is not accurately described by Eq. (14) [13,22].

In conclusion, we have studied the order-disorder tran-
sition of a two-layer Heisenberg antiferromagnet using a
modification of Handscomb's quantum Monte Carlo tech-
nique [9,10]. The critical ratio between the interplane
and in-plane coupling constants was determined to be
2.51 6 0.02. The T = 0 critical behavior is consistent
with the transition belonging to the universality class of
the 3D classical Heisenberg model. At finite tempera-
ture we have studied the uniform magnetic susceptibil-
ity and the correlation length. Close to criticality the
susceptibility is a linear function of the temperature for
T g 0.9Ji, in agreement with predictions [2,3] for the
(2+1)-dimensional nonlinear o model. The inverse cor-
relation length shows a linear behavior for T ( 0.6Ji.
However, the ratio of the linear coefficients of y„and (
does not have its predicted value, however. As also ap-
pears to be the case for the single-plane Heisenberg model

[2,3,13,22] the uniform susceptibility exhibits quantum
critical behavior well beyond the crossover boundaries
defined by the behavior of the correlation length.
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FIG. 5. The inverse correlation length for L = 10 (open
circles) and L = 24 (solid circles) versus the temperature for
J = 2.5 and J = 2.6. The lines are the predicted form, Eq.
(14) with p, = 0 and c = 1.69 (solid lines), and c = 1.97
(dashed lines) .
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