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Phenomenological Theory of the Paramagnetic Meissner Effect
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We study the paramagnetic Meissner efFect in a network of Josephson junctions which include
a random distribution of x junctions. We perform dynamical Langevin simulations for the field
cooling (FC) and zero-field cooling (ZFC) susceptibilities W. e show that while the ZFC susceptibility
is diamagnetic and of the order of —1/4ir, the FC susceptibility can be paramagnetic for a finite
concentration of vr junctions. The field and concentration dependence of the FC susceptibility is
studied. The model presents some glassy properties and the results are in good qualitative agreement
with recent experiments in ceramic Bi compounds.
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Since the discovery of the high-T, superconductors, the
ceramic structure of the first samples [1] renewed the
interest in granular superconductivity, characterized by
history-dependent magnetic properties [2—4]. Recently,
Braunisch et aL [5] studied the magnetic response of
ceramic samples of BizSr2CaCuzOs at very low fields.
They found that, whereas the zero-field cooling (ZFC) ex-
periment shows full fiux expulsion, the field cooling (FC)
susceptibility could be either much smaller than —1/4z.
or even paramagnetic. In many samples the FC low-

temperature susceptibility at very low fields ( 0.1 Oe)
is paramagnetic and large, typically 0.5 in units of 1/4z.
As the field increases the susceptibility decreases and be-
comes diamagnetic for fields larger than 0.5 Oe. More-
over, the temperature dependence of this so-called para-
magnetic Meissner effect (PME) clearly indicates that
this phenomenon is correlated with the occurrence of su-

perconductivity. It has recently been proposed to call
this phenomenon the Wohlleben efFect [6].

A qualitative explanation for the PME based on the ex-
istence of spontaneous orbital currents was proposed in
Ref. [5]. Kusmartsev [7) and Sigrist and Rice [6] indepen-
dently studied the phenomenon assuming the existence
of anomalous Josephson junctions between the grains.
These anomalous junctions have a negative Josephson
coupling, and they are called z. junctions because the
Cooper pairs acquire a phase vr in the tunneling process.
If in a loop of grains there is an odd number of z junc-
tions, a spontaneous current could be generated giving
rise to an orbital moment. A network with a concentra-
tion c of randomly distributed vr junctions may behave
as an orbital glass [7] and naturally account for the ob-
served paramagnetic response. The microscopic origin of
the x junctions is not clear. On one hand, Bulaevskii et
aL [8) proposed some time ago that magnetic impurities
in the junction can produce elastic tunneling associated
with a spin Hip process which induces an extra phase
as Cooper pair tunnels. It has been argued, however,

that in order to produce the observed efFect, the impurity
concentration must be rather large and interactions be-
tween impurities would suppress the efFect. On the other
hand, Sigrist and Rice interpreted the paramagnetic re-
sponse of the Bi compounds as an indirect observation of
d-wave superconductivity in this material. Experimental
evidence of this has been reported recently by Wollman
et al. [9] in dc-SQUID interferometry measurements.

Regardless of the origin of the vr junctions, before ac-
cepting this description as the explanation of the PME,
the complete thermodynamic behavior should be eval-

uated in a realistic model Josephson network in order
to see if the temperature and field dependence of the FC
and ZFC susceptibilities are consistent with the available
experimental results.

Theoretically, granular superconductors have been
modeled with networks where the nodes represent the
grains and the links represent the coupling between
grains through Josephson junctions [2—4]. In this work,
we present the first simulation for the response of a net-
work of Josephson junctions with a random distribution
of z junctions. We show that this model, although rather
simple, contains the essential ingredients for a quantita
tive description of the PME. We consider two dimen-
sional (2D) and three dimensional (SD) networks. We
include in our simulations the magnetic field induced by
local screening current effects, which is crucial in order
to obtain the PME.

The model studied in this paper is defined by the
"coarse grained action"

E = —) J,ticos@li(r) + ) [C„-(R)—I'„-"'] . (1)
r, P, R,v

The Grst term is the Josephson coupling energy, where

iIr„(r) = 8(r-+ Is) —8(r) —
@ J,

'+"A dl is the gauge in-
variant phase difFerence through the junction, with 8(r)
the phase of the superconducting order parameter of the
grain at r, 4 0 the Aux quantum, and A the vector poten-
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tial. Here (r, p, ) labels the junctions in a square (cubic)
lattice which connect the grain lattice sites r and r + p, ,

with jc a unit vector along the x or y axis (or z axis).
The Josephson coupling J,„- = k~z is positive (nega-
tive) for 0 (7r) junctions, with I, the critical current of
the junctions. In principle, each grain in the network
has a given superconducting critical temperature T,~, at
which I, vanishes. Thermal fluctuations of the supercon-
ducting phases 8(r) destroy the coherence between grains
at a temperature T, of the order of the Josephson energy
k~T, zo . If the intergrain coupling is weak, i.e. , I, is
small, T, can be relatively small as compared with T,~,
and in the range 0 (T (T, the temperature dependence
of I, can be neglected. For clarity, and in order to em-

phasize the eKects of the phase fluctuations of the grains,
we will work in this limit. The model has no topological
disorder, and all the randomness is in the sign of J».

The second term in Eq. (1) is the magnetic energy
of the current induced magnetic fields. This term has
been usually neglected in most of the simulations of
Josephson networks [2,3], except in some recent 2D sim-

ulations [10]. The total magnetic flux through a given

plaquette is given by 4„-(R) = 4'~&"' + LI„-(R), where
4„'-"' is the flux per plaquette due to the external field,

I„-(R) is the loop current, and L is the self-inductance
of the loop [11]. Here (R, i) labels the plaquette cen-

tered at the dual lattice site R and oriented along the
direction v (in 2D, v = z only). The external mag-
netic field is along the z direction, O'„-"' = HSi, with
S the area of the plaquettes. The magnetic flux is re-

lated to 4„-(r) by @ 4p(R) = —6& A 4„-(r), where the

lattice curl operator 6"- is, for example, 6'„- h @&(r) =
4„-(r)—4'„(r+y)+-4-tr+x) —4-(r). We consider ther-
mal eKects by studying the Langevin dynamical equa-
tions of motion for 4„-,

(2)

The Langevin white noise i1„-(r,t) has correlations

(rI&(r, t) ri„(r', t') ) = -2 I'k~T6. ..b& &
6'(t —t'), where T

is the temperature, k~ is Boltzmann's constant, and the
dissipation parameter is I' = (222)z &, with 'R the normal
resistance of the links.

The system of difFerential equations given by Eq. (2) is

integrated numerically with a second order Runge-Kutta
algorithm suitable for stochastic systems [12]. Typical
integration steps are At = 0.02 —O. le~ (7~ = &~~f1 ),
and for each given temperature the integration is car-
ried out for time intervals of t = 3000~&, after an equi-
libration time of 750m.~. To allow for the penetration of
the magnetic field from the boundaries, we take free end
boundary conditions.

We can simulate ZFC and FC experiments: at T = 0
the current distribution is calculated in the absence of
an external field; this state is used as the initial condi-
tion to determine the stable state after turning on the

external field. Then the temperature is increased by a
small quantity bT always using the previous state as a
seed to calculate the new current distribution, thus simu-

lating a ZFC process. Once temperatures larger than T,
are reached, the temperature is slowly decreased with the
field still on, simulating a FC process. At each tempera-
ture the magnetization M(T, H, c) along the z direction
is calculated as

where f = HS/Co is the normalized external field, and
the network has N x N x N, grains (N, =1 in 2D). Here,

( ) is an average over time and over independent ran-
dom configurations of x junctions. The normalized sus-

ceptibility is defined as y = m/f = 4vry, with y = M/H.
At high temperatures the thermal noise produces large
fluctuations in the physical magnitudes. The quality of
the numerical results depends on the performed statis-
tics which in large 3D networks may involve long CPU
times, restricting us to take averages over a few disorder
configurations.

We first study the effect of a single n junction at the
center of a 2D square network of 0 junctions. The mag-
netic flux through each plaquette after a ZFC process at
T = 0 is shown in Fig. 1(a). There is a current flowing

through the vr junction with the structure correspond-
ing to a vortex and an antivortex pinned to this m de-
fect. However, the magnetic flux in the two plaquettes
next to the vr junction is not one quantum flux but de-

pends on the value of II,. This type of structure in the
current distribution is characteristic of systems in which) 1; for small C the n junction induces no

C'o

currents in its neighborhood. The whole vr defect does
not produce a net magnetization and the field expulsion
is complete, as in a Meissner state. If we now increase the
temperature above T„the magnetic field fully penetrates
the sample. From this state, we decrease the tempera-
ture again to T = 0, as in a FC process. But now the
field that has penetrated the sample polarizes the defect,
giving rise to a new current distribution which resem-
bles a vortex with the x junction in its core as shown

in Fig. 1(b). In this state there is no current flowing

through the m junction. As can be seen in the figure, in

the FC state there are also other flux lines threading the
sample, since even in a perfect network there is an intrin-
sic pinning [4] which prevents these other flux lines from
flowing out of the sample. Therefore, after a FC process
a m defect contributes with an additional positive magne-

tization. This same behavior of a single zr junction occurs
in 3D but with a nucleation of a vortex loop instead of a
vortex-antivortex pair in the ZFC state.

The minimum magnetic field I*necessary to polarize
a vr defect is related to the energy difference between the
two current configurations induced by the defect. For the
parameters corresponding to the figure, H* = 0.0240/S.
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FIG. 1. Magnetic flux distribution Cg(R)/Oo of a two di-
mensional system of 20 x 20 sites with a m' junction located
at its center. Each point in the mesh represents the Aux of
a plaquette. The parameters are ~ 2~@zl. = 8 and the ex-40
ternal field H = 0.140/S. The magnetization obtained in a
ZFC process (a) and after a FC process (b) is shown.

FIG. 2. Susceptibility g as a function of temperature for
lattices with 8 = 8. (a) Two dimensional system of 16 x 16
sites with c = 0.2 and configurational average over three sam-
ples. (b) Three dimensional system of 8 x 8 x 8 sites with
c = 0.3 and configurational average over four samples. The
magnetic field in units of C 0/S is indicated. Temperature is
in units of ~ '&

However, if in the same plaquette there are two parallel
n junctions, the resulting defect has a similar structure
with a threshold field H" an order of magnitude smaller.
A stair-shaped string of 7r junctions starting at the edge
of the sample produces a single easily polarizable orbital
moment at its end. In general, if there is a random distri-
bution of vr junctions there will be a distribution of fields
H*.

The ZFC and FC susceptibilities (gzpc and yFc) can
be calculated for an arbitrary concentration of n. junc-
tions. For the bipartite lattices we are studying, a sys-
tem with a concentration c .of randomly distributed vr

junctions can be mapped, through a gauge transforma-
tion, onto a system with a concentration 1 —c. We then
restrict to the case c ( 0.5. Results for the susceptibil-
ity corresponding to a 2D network with c = 0.2 and a
3D network with c = 0.3, with high screening, 8 = 8,
and difFerent values of the applied field, are shown in
Figs. 2(a) and 2(b), respectively. In all cases the yzFc at
low temperatures is close to —1/4vr. As the temperature
increases it decreases and is zero for T ) T, = a& '&

where n is a numerical constant. From the figure we
estimate a 0.4.

At low fields, the FC susceptibility increases with de-
creasing field and becomes positive, because of the contri-
bution of all the polarized vr junctions. This is the PME
in the same way as it was seen in the experiments. In
our simulations we found that for 2 ( 1, the PME is not
clearly observed within the statistical error bars. This is
also consistent with the experiments, where the PME is
clearly seen only in samples with high critical currents

(i.e., with high 8).
The experimental results show some peculiarities of the

curves of magnetizations vs temperature close to T, : the
FC susceptibility starts being diamagnetic before becom-
ing paramagnetic and, in some cases, a peak in the ZFC
susceptibility as a function of T is also observed. We
have reproduced these features for some parameter val-

ues although a detailed comparision with the experimen-
tal results is diKcult due to the thermal noise in our
simulations.

The FC susceptibility is positive for small fields and
decreases as the field increases; it goes through a diamag-
netic minimum and tends to zero at large fields as shown
in Fig. 3(a). This same type of field dependence of gFc
has been observed experimentally. The FC susceptibil-
ity depends also on the concentration of 7r junctions in
the sample. In Fig. 3(b) we show this dependence for a
3D lattice at a fixed external field. The concentration
dependence of the FC susceptibility can be estimated by
counting the number of plaquettes having an odd num-
ber of n junctions, and thus giving a paramagnetic con-
tribution to gFc. In the figure we show a fitting of the
numerical data calculated in this way, the only free pa-
rameter being the efFective susceptibility of each one of
these plaquettes.

Even when yF~ & 0, the differential susceptibility is
always diamagnetic. If we are in the FC curve with

yFc & 0 at a given temperature and slightly increase
(decrease) the external field, the magnetization linearly
decreases (increases).
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Although the general behavior of these systems is in-

dependent of the cooling rate bT, the love-temperature
value of gFg depends on it. In general we obtain that a
smaller 6T gives rise to a larger yFc. This dependence
on the cooling rate is characteristic of spin glasses [13].
In fact, the model of Eq. (1) is an XY' spin glass [13]
but with a particular quadratic coupling with the mag-
netic field. Thus, the picture of an orbital glass seems to
be more appropriate than the simple model of indepen-
dent loops analyzed in Ref. [6]. A complete study of the
glassy properties of the model would require the calcu-

lation of the relaxation rates at a fixed temperature and
field. This problem, which presents technical difficulties
since it involves long simulation times, is presently under

study.
In summary, we have calculated the field and tem-

perature dependence of the magnetization for a network

of Josephson junctions with a random distribution of
anomalous m junctions. The results clearly show that
while the low-temperature ZFC susceptibility at small

or moderate values of the external fields is of the order
of —I/4z, the FC susceptibility is paramagnetic for cer-
tain parameter values. The paramagnetic response af-

ter a FC process is obtained for a finite concentration
of vr junctions, large self-inductances or critical currents,

FIG. 3. FC susceptibility gFc for 8 x 8 x 8 samples with
l: = 8, obtained with a cooling rate of 6T = —0.02 "

2ekB
and averaged over five samples. (a) As a function of field

f = KS/Cp for concentration c = 0.3. (b) As a function of
concentration for f = 0.1. In (b) the solid line shows the
fitting described in the text.

( "@ ) 1) and a small external field (K (( Co/9). The
Beld dependence of yFC at low temperatures is in agree-
ment with the experimental results. The model presents
some characteristics of a spin glass system, in particular
the dependence of the low-temperature value of yFC with
the cooling rate. Our results are in general in good agree-
ment with the experimental data and support the idea of
an orbital glass description of the Bi-2:2:1:2compounds.
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