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Stabilization of External Modes in Tokamaks by Resistive Walls and Plasma Rotation
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It is shown that low n, pressure-driven, external modes in tokamaks can be fully stabilized by resistive
walls when the plasma rotates at some fraction of the sound speed. The stabilization depends on toroidal

coupling to sound ~aves and is aAected by ion Landau damping. Two-dimensiona1 stability calculations
are presented to show the resulting gains in the beta limit.

PACS numbers: 52.35.Py, 52.30.—q, 52.35.Dm, 52.55.Fa

The plasma pressure, or P=2po(p)/(B ), that can be

confined by magnetic fields is limited by ideal magne-

tohydrodynamical (MHD) instabilities. Troyon et al.
[I] found numerically that the beta limit of a tokamak

is proportional to the plasma current, P,„=gl„[MA]/
a[m]BO[T]. This scaling has been confirmed experimen-

tally, although rather different normalized betas, g, have

been reached in different tokamaks. Troyon et al. [I]
found g=2.8, and more recent numerical studies have

given higher estimates, 3.5 or 4. Experimental work on

the DIII-D tokamak [2] has reached g=5, and MHD
stability analyses show that at least some of these

discharges are unstable to ideal MHD modes of low

toroidal mode number n [3]. These are robust, global in-

stabilities, for which kinetic corrections can be estimated
as small. By convention, theoretical beta limits are com-

puted by requiring ideal MHD stability for static equili-
bria without any stabilization by conducting walls. It has

been pointed out that the stability of high-g discharges in

DII I-D could be accounted for by introducing a perfectly
conducting wall at the location of the actual resistive wall

[4], and this has been verified by stability analysis for
certain discharges [3]. However, conventional wisdom

holds that resistive walls can only slow down, but not sta-
bilize, ideal MHD instabilities. Here, we present some

first theoretical results on stabilization of toroidal,
pressure-driven, external modes by resistive walls. We
show that such modes can be completely stabilized in

tokamaks with sonic plasma rotation and that the effect
gives a significant increase of the beta limit.

It is well established that resistive walls do not change
the stability boundaries of ideal MHD modes that do not

have a resonant surface, where ki=—(m/q n)/Ro —0, in

the plasma (m is the poloidal mode number, q is the safe-

ty factor, and Rti is the major radius); examples are the
"vertical" instability and the "cylindrical" external kink

mode. Resistive walls slow down the growth of these
modes to the resistive time scale of the wall, r =L/R,
but do not change the stability boundaries from their
wall-at-infinity value. The growth rates are independent
of plasma inertia and are insensitive to sub-Alfvenic plas-
ma rotation [5,6]. By contrast, tearing modes can be sta-
bilized by resistive walls, provided the rotation frequency
exceeds r ' and a characteristic tearing growth rate

t)v g/Bt = —(B Vp), /Bopo —«Ik II&' hilt II (2)

When compared to guiding center theory [I I] the formu-

[6,7]. Similar conditions apply to the toroidal, pressure-

driven, external kink modes, for which ki vanishes at the

resonant surfaces where q =m/n. In a layer around each
resonant surface, the rotation frequency exceeds the local
Alfven frequency. Furthermore, for pressure-driven

modes, the parallel motion is important and this is in-

fluenced by inertia when the rotation is comparable to the
sound speed.

Toroidal, pressure-driven modes are complicated be-

cause of the coupling between different poloidal harmon-

ics and between the Alfven and sound waves [8]. There-
fore, we have studied the wall stabilization in toroidal

geometry numerically. The spectral codes MARs [9] and
NOYA [10] have been modified to include a resistive shell.
The time constant of the shell, r„, is taken to be much

longer than any ideal MHD time scale. Rotation is

modeled by making the shell rotate toroidally with fre-

quency to„,. The equilibrium is static, and this allows us

to separate wall stabilization from other effects of plasma
rotation. We treat the plasma as ideally conducting,
which excludes resistive modes rotating with the plasma.

When the rotation is sonic, the plasma motion excites
sound waves propagating along the magnetic field lines,
and in MHD, these exhibit unphysical resonant behavior.
In a more complete theory, the sound waves are subject
to strong ion Landau damping if T, = T;, and an accu-
rate calculation must be kinetic along the field lines [11].
Nevertheless, useful approximations can be found by add-

ing dissipative terms to the fluid equations [12,13]. We
have tried three such modifications of the scalar pressure,
ideal MHD equations. Two of these consist of adding a
damping term for the Lagrangian pressure perturbations.
The perturbed pressure is split into convective and La-
.grangian parts, p ~

= —f Vpo+p ~L, where

ap, /at = —rp V v —vp,

The damping rate v is either taken to be a fixed number
or to represent a thermal conductivity following Ham-
mett and Perkins [13], v=g(kiv, h;). As a third alterna-
tive, we add a parallel viscosity for the motion along the
field lines:
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(dh'/2m) [I —(a/d) "'] = (x+iy )/(w —x —ty ), (3)

where w =2/[(d/a) "' —I ].
Let us first consider the case of no rotation, y =0, and

an equilibrium that is unstable in the absence of a wall,
x) 0. Equation (3) then predicts that the resistive wall

mode is unstable for d &d;d, .„~=a[1+2/x]'~ "'. With in-

creasing wall radius, 6' + when d d;d, „. i, where
the resistive wall mode connects to the ideal mode, which

is unstable for d) d;d, „. i. In the region of ideal instabili-

ty, plasma inertia modifies (y'/y), =, so as to maintain
g' =+oo

When the rotation frequency is finite, y is nonzero.
This eliminates the zero in the denominator of Eq. (3) so

lation (2) with I = —', , r= Jzc= I.77 gives a good ap-
proximation for the perturbed perpendicular pressure in-

duced by Lagrangian perturbations of the magnetic field

strength.
We now present numerical results for the modified

ideal MHD eigenvalue problem including a rotating resis-
tive shell. When the pressure exceeds the stability limit
with the wall at infinity, we find two classes of modes that
can be unstable: (a) one which has zero frequency in the
frame of the plasma and hardly penetrates the shell, the
plasma mode, and (b) one which penetrates the wall and

rotates with respect to it at a low slip frequency equal to
O(r ') &&ro,ot, the resisrite wall mode This. mode ro-

tates with respect to the plasma at a frequency close to
the imposed rotation frequency ro„,. Figure I shows an

example of how the growth rates of the plasma and resis-
tive wall modes depend on the wall radius d. The two
modes are influenced in opposite ways by the wall dis-

tance —the plasma mode is destabilized as the wall is

moved further from the plasma, while the resistive wall

mode is stabilized.
The plasma mode rotates with frequency = co,ot)) r „, '

with respect to the wall. It does not penetrate the wall

and behaves as if the wall were ideal. The plasma mode

is unstable on the ideal MHD time scale when the wall

radius exceeds the ideal MHD threshold, d;d„. l. This
marginal wall position decreases with increasing pressure
and goes to infinity at the conventional beta limit.

The resistive wall mode becomes increasingly stable
with increasing wall radius. This counterintuitive behav-

ior can be understood by a large aspect ratio calculation
of 6' at the resistive shell. We consider a magnetic per-
turbation in the vacuum, dominated by one poloidal har-
monic m (assumed) 0). The perturbed magnetic flux

function y satisfies V&@=0 in the vacuum region and the

poloidal harmonic m is a linear combination of r "' and
r"'. The growth rate of the resistive wall mode is

y=dd'/r, where 6' =[y'(d+) —y'(d-)]/y(d). If we

write the logarithmic derivative of y at the plasma edge
r =a as (y'/y)„-, = —(m/a)(1+x+iy) (with x,y real

and y~0 because of the rotation) a simple calculation

gives 6',
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HG. l. Growth rate j'res and slip frequency ANres Nrot ~res
of resistive wall mode and growth rate of plasma mode y;d„[
versus wall radius for the n =I mode with pressure about 30«~

above the free-boundary limit and m„~/ra~ =0.06.

that h,
' remains finite and complex for all wall distances.

Thus, rotation effectively separates the resistive wall

mode from the plasma mode. The growth rate of the
resistive wall mode remains O(r„, ) for all d, and if

)) r~, the plasma response can be computed neglect-
ing the small slip frequency with respect to the wall. [Be-
cause of the damping added to the sound waves, the solu-

tion in the plasma remains well behaved as Re(y) — 0;
i.e., the MHD continuum resonances [8] move into the
stable half plane. ] In Fig. I, the resistive wall mode is

stabilized when d exceeds a threshold, predicted by (3) to
be d,„,=a[l+2x/(x +y )]'~ "'. The present discussion

is clearly oversimplified, e.g. , by only considering one po-

loidal harmonic, but is shows that rotation separates the

plasma and resistive wall modes, and that they behave in

opposite ways with respect to the wall distance. It also
shows that the optimum wall position is some distance

away from the plasma.
We conclude that when a rotating plasma exceeds the

pressure limit with the wall at infinity, there are two sta-

bility limits for the wall radius, d,„,. and d;d„,. i. The plas-

ma is stable when d,„,& d & d;d„~, and this condition

must apply for all n~0. We have computed stability lim-

its including rotation and a resistive shell for several

MHD equilibria. Figure 2 sho~s d;d, „. i and d„, for n =1
and 2 versus normalized beta for a JET-shaped equilibri-

um with ro„t/ra~ =0.06 and a broad pressure profile,

po/(p) = I.7. Wall stabilization is more powerful when

the pressure profile is broad so that the beta limit is set by
external modes. We have adjusted the current profile to
keep q~ =1.2 and q, =2.5S and used the parallel viscosity
model (2) with K =1.77.

In Fig. 2, d;d, „. i is smaller for n =2 than for n =1, so

that the outer stability limit for the wall position is set by

n =2. In fact, n =3 gives an even more restrictive d;d, „. [.

However, the present model is unrealistic for high n

modes. First, strong shaping, such as in DIII-D, can

cause a transition to second stability for large and inter-

mediate n. Second, the velocity profiles in experiments
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FIG. 2. Marginal wall position versus normalized beta for
the plasma (filled symbols) and resistive wall modes (open sym-
bols) with toroidal mode numbers n =1 and n 2. The plasma
mode is stable for d &d„;t and the resistive wall mode for
d & d„;t. The region stable to both the n =1 and n =2 modes is
bounded by the n l resistive wall mode and the n =2 plasma
mode.

FIG. 3. Marginal wall distance versus normalized beta for
the plasma mode (marked "ideal" ) and the resistive wall mode.
Curves a-e apply for tu, «/raq =0.06. a and b give results for
the pressure damping model (I) with a, v/ra~ 0.025 and b,
v/ra&=0. 0025. c-e give the results for the parallel viscosity
model (2) with c, s =O. l, d, s 0.885, and e, s =1.77. The
curve 1'or ru„l/re 0.03 was computed for s 1.77.

are sheared, which is expected to stabilize high n balloon-
ing modes [14]. Thus, the stability boundaries of the
high and intermediate n modes should be more sensitive
to the plasma rotation profile and to geometrical effects.
Nevertheless, as exemplified by Fig. 2, the most restric-
tive d;d, „. i can be set by toroidal mode numbers larger
than 1. However, Fig. 2 indicates that the inner limit,

d„.„, is set by the n =1 resistive wall mode.
For the equilibria in Fig. 2, the highest normalized

beta that is stable to both n =1 and n =2 at the
prescribed rotation frequency is about 4.2, to be com-
pared with the threshold of 3. 1 in the absence of wall sta-
bilization. For equilibria with broad pressure profiles, we

find that when q, increases, d„„for n =1 moves closer to
the plasma boundary, and the maximum normalized beta
increases.

Considerable uncertainty comes from computing the
perturbed pressure from fluid rather than kinetic theory.
Figure 3 shows results obtained with different fluid ap-
proximations, using the same equilibrium as in Fig. 2 and
ro,«/ra~ =0.06. Stability limits are shown for n =1, ob-
tained with the pressure damping (1) and parallel viscosi-
ty (2) models and different dissipation coefficients. The
Hammett-Perkins approximation with @=2/n gives a re-
sult almost identical to the pressure damping model with

v/ra~ =0.025, while the parallel viscosity model generally
gives a stronger stabilizing effect.

Also shown in Fig. 3 is a comparison case with half the
rotation frequency, ru, «/ruz =0.03. The stabilization is
much weaker for this case and is almost lost when ro„,|/
co~ ~ 0.02. Thus, there is a threshold behavior with
respect to the rotation frequency. For the equilibria we
have examined, cu„t needs to be about 0.05co~ to give
significant wall stabilization. This corresponds to about
20% of the sound frequency at the q =2 surface.

If the sound waves are eliminated by setting I =0, the
wall stabilization becomes very weak at the low rotation

frequencies discussed here. Thus, the stabilization by
resistive walls and rotation is mainly connected to the dy-
namics of sound waves. By allowing I to be a function of
the equilibrium flux function y, we have verified that the
stabilization is mainly a bulk (as opposed to singular lay-
er) effect.

The present analysis is based on a numerical solution of
the modified MHD eigenvalue problem. An analytical,
large aspect ratio calculation is beyond the scope of this
Letter. Such a calculation must include toroidal coupling
of the different poloidal components, and terms represent-
ing inertia and fluid compression have to be added to the
standard marginal stability equations. The role conven-
tionally taken by the resonant surfaces where kt=0 is

now taken by the continuum resonances where
= + co„,t, and to complicate matters further, these involve

Alfven and sound waves coupled by the geodesic curva-
ture in toroidal geometry [8]. In the limit of vanishing
growth rate and damping coeScients, the continuum res-
onances show a 1/(y —yo) behavior for the parallel dis-
placement and log~y —

yo~ for the normal displacement.
Our numerical solutions show that realistic values of the
damping coefficients broaden the singularities so that
they are barely distinguishable in the normal displace-
ment. In terms of the logarithmic derivatives of the main
Fourier components at the plasma edge, y'(a)/y(a)
= —(m/a)(l+x+iy), the resistive wall mode generally
has a smaller x than the plasma mode. The imaginary
part y is usually larger than x for a stabilized resistive
wall mode and increases when the parallel viscosity is re-
duced. [Although the ideal MHD equations have real
coefficients when Re(y) and the dissipation coefficients
vanish, the solution is complex as it must be continued
around the continuum singularities. ] Because of the com-
plicated dynamics of the resistive wall modes, we feel that
numerical computation is needed to establish results as
unambiguously as possible, although analytic theory will
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undoubtedly help to clarify the physics. Finally, an accu-
rate calculation of the sound wave dynamics requires a
kinetic description along the field lines, which we plan to
implement numerically using drift kinetic theory.

In summary, we have shown that low n modes can be
stabilized by resistive walls in combination with plasma
rotation and that this wall stabilization leads to experi-
mentally significant increases in the beta limit. The effect
is more pronounced for broad pressure profiles and high

q, . The strongest effect occurs for n =1, which makes
the mechanism particularly attractive for advanced tok-
amak operation, as ballooning modes can reach a second

region of stability for large pressure and low shear, while

the n = I mode does not access second stability without
wall stabilization [15]. The numerical example shown in

Fig. 2 indicates an increase in the beta limit by about
30% by the wall stabilization. Increases of similar mag-
nitude are observed on DIII-D, and some of these equili-
bria are believed to be stabilized by the vacuum vessel

[3]. A certain minimum rotation frequency is needed for
a significant effect. According to our numerical calcula-
tions, corot/ruq needs to be at least 0.03-0.05 for typical
tokamak parameters. This condition is generally satisfied
in D[[l-D discharges where typical values are I X IO

s ' & cog (2x10 s ' and 60x10 s ~ & rg)rot (200
x10 s
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