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Giant Res@nance EfFects on Heavy-Ien Fusion
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The e8ect of the coupling to a resonant state in one of the partners of a heavy-ion fusion reaction
on the fusion cross section is discussed. We conclude that the width of the resonance could either
enhance or hinder the fusion, depending on the relative importance of the spreading to escape
vridths. General comments on the fusion of neutron-rich nuclei are made.
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Coupled-channel efFects on the fusion of heavy ions
have been widely discussed in the literature in recent
years [1].The overall picture that has emerged f'rom these
studies is that the fusion cross section is enhanced, as
long as the coupling is restricted to normal channels. By
normal, we mean excited states and transfer. The efFect
of the coupling to breakup channels (where the projec-
tile or target could disintegrate during the fusion process)
has only recently been considered in cases involving low Q
values, usually encountered in loosely bound neutron-rich
projectiles [2]. Conflicting conclusions have been reached
concerning this latter effect [3,4]. A more natural frame-
work in which to discuss this issue is to consider the efFect
of the coupling to a resonant state in one of the nuclei,
which eventually decays into open channels (breakup).

Our aim in this paper is to elucidate the problem of
the efFect of the coupling to resonant states on the fusion
cross section. Since, according to Ref. [5], the width of a
resonance, I', of a many-body system such as the nucleus
is the sum of a spreading width r~ which measures the
degree damping of the resonance due to its coupling to
more complicated states in the same nucleus, plus the
escape width, r~, which measures the actual fragmen-
tation of the nucleus into the open channels (except for
the p-emission contribution, which we do not consider),
it is natural to expect that the efFect of the coupling on
oF should depend on the ratio p, = r~/r. If this ratio
is close to 1, we expect an enhanced fusion probability,
since there are many mutes (excited states in the same
nucleus) for fusion to occur. The other limit, p, (( 1,
should result in a smaller fusion probability, since the
resonance (nucleus) could "break up" before fusion oc-
curs.

We use the exit doorway model [6] to treat first the
effect of the spreading of an excited, collective state, on
the fusion cross section. The entrance channel couples
to the compound nucleus (fusion) either directly or via
the bunch of excited channels that are modulated by the
doorway. To reach these "fine structure" channels the
system has to pass through the doorway.

We take for the Hamiltonian of the system H = Ho+V,
where Hp is diagonal in open channel space. Here Ho ——

hp + K + U, where hp is the intrinsic Hamiltonian, K is
the kinetic energy operator, and U is the optical potential

The last term in Eq. (1) represents the spreading of

I d). Notice that
I d) is riot an eigenstate of Hp. Only

the states with no widths are so

&o I wp) = Eo
I wp) &p I &) = E' I &)

The full Schrodinger equation of the system reads

[E —(Hp+ V)] I @) = 0,

(2)

which, upon projection onto the difFerent channels, gives
the usual set of coupled-channel equations:

(E —Ep —Hp) 4'p(+) ——) Vp; @I+),

(E —E, —H;)4,'+' = V,p 4p'+'. .

The "exit-doorway" hypothesis implies

Voi = Voana Vo = Vao;q

(4)

The coefficients crd; = (d I y;) are obtained from Eqs.
(1) and (2). One generally finds

(E' —Ed)'+ 4

where r~ is related to the 6, factors, viz. ,

(6)

where the bar denotes an average over the states i and p
is the average density of fine structure states.

Equation (4) can be solved for @p(+), the exact wave
function in the elastic channel (remember V&~ = 0, and
Ep ——0):

which contains the complex nuclear plus the Coulomb
parts. The coupling among these channels is represented
by V. We ignore the couplings among the excited, fine

structure, channels scattered around the doorway. We
now write

&o =
I yo) Eo(po I

+). I &)e'('
I + I d) Ed(d I

'a

+).[I i)&'« I+ I d)&'(i I].

0031-9007/94/72 (17)/2693 (4)$06.00
1994 The American Physical Society

2693



VOLUME 72, NUMBER 17 PH YSICAL REV I E% LETTERS 25 APRIL 1994

~

E —Hp —) Vp, . V,p I@p(+) =0.'E —E, —K, —U, +is
(7)

With (5) and (6), it is easy to reduce Eq. (7) to the
following:

for Aux lost in directly exiting the doorway. In fact, the
operator 2 G'& I'& Gg is nothing but a Gnite-width ver-1

sion of the usual delta function that describes on-shell

processes.
The total fusion cross section is calculated from

the elastic channel matrix element of ImUo + VogG&

x ImUd Gd Vdp. We obtain [7]

E —&o —Vo~ , Vd, 0 p+ = 0. (8)
E —Ed —Hd + '2' )

oF = —(@p+'
I
Im U,

I
4p+') + (@d+'

I
Im Ud I

4d+') .

(14)
In deriving Eq. (8), we have assumed U, = Ud, and

Hg = Kg+ Ug, with Ug being the optical potential in the
doorway channel. It is interesting to note that Eq. (8)
can be rewritten as two coupled equations,

(E —Kp —Up) 4'p+ = Vpd@d+,
(9)

(E —K —Ud) 4 = Vo@, +(E —iI" /2)@„(+) = (+) ~ s (+)

To get insight into the eKect of the Gnite width of the
resonance on oF, we consider the very schematic model

of Dasso, Landowne, and Winther [8] where the coupling
potentials are taken to be constant, and diagonalize the

two coupled equations for
I

@p+ ) and
I

4d+ ), Eq. (9),
after setting Ud = Up, Kd = Kp, and Vpd = Vdp = n. This
is accomplished by introducing an appropriate biorthog-

onal basis [9],

Equations (8) and (9) are the starting point for the
discussion to follow. The total optical potential in (8)
contains two pieces. A background one, Up, which, in
our model, arises from the coupling to the fusion chan-
nels, and a second piece coming from the coupling to the
channels where one of the nuclei is in the doorway res-
onance state. We call this part of the optical potential
the intermediate dynamic polarization potential (IDPP)

where

'r,' '
= (x+ x-) I

0+
A

I I
-t+

I l (15)

(X+ X+) =1=(X-, X'),

(x+ x'-) = o = (&- &+)

iI'„")
VIDPP Vpd I

E —Ed Hd + "
I Vdp2)

—= Vpd Gd (E)Vdp (10)

It is instructive to discuss the reactive content of
VjDpp. For this purpose we calculate its imaginary part,

ImViDi p = Vpd Gd Im Ud Gd Vdp

+V„g(—) G(+)' l l G(+) fI(-)' V„(11)
w here the bare intermediate Green's function Gd and the
full intermediate Moiler operator Ag are given by

il t')
Gd =

I
E —Ed —Kd +

2 ) (»)

0( ' = (1+U,' G,') . (13)

The first term in (11) represents flux lost to fusion
channels via the doorway, while the second term accounts

(E —Kp —Up —A+)e+ = o,

(E —Kd —Ud —A )4' = 0.
The transformation matrix reads

(17)

~( eP ')I

k@d )
r vA+

A~ +v~+
A+

A~++v~

MI~~+

V

VA
A~ +v~

The fusion cross section, Eq. (14), can be written as

A~ ——— Ed — ~ + E&~ — ~ +4v2 —iEdj&l
J

Wl

(16)

Calling the eigenchannel wave functions 4'~ and 4'

we obtain the two decoupled equations,

= (Mt M)++o~+ +o~ (M~ M) +2Re[u~+ (Mt M)+ ], (19)

where o.F is the fusion cross section in the eigenchannel (6) while o&~+)( )(M't M)+ is an interference term that

contains the matrix elements (4++
I
ImU

I

4+)) and (4+
I
ImU

I
4++ ).

The matrix elements are evaluated using the incoming wave boundary condition. The full details of ImU are not

needed. Only the penetrabilities of the complex barriers ReU(r) + hsE(l + 1)/(2p r 2) + Ay are needed (once the flux
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penetrates the barrier, it is fully absorbed). Thus we

have for OF
-(+)

oi'1 = —„,) (2~ + 1)
g=p 1 + exp 2Re[f ~ k+(r)dr]

(20)

A(A) =
]Az + vz] iAz + vzi

and A is given in (16). The finite width of the res-
onance efFectively reduces the Q-value effect and thus
og(I'&)/o~(I'& ——0) —= E(I'&) should be larger than 1.
To be specific we consider the system iiLi+ Pb. The
barrier height and curvature were taken to be 26.0 and
3.0 MeV, respectively [3]. We consider the coupling to a
normal giant dipole resonance (excitation of the core PLi)
whose excitation energy is Eg = 16 MeV. We take for v
= 3 MeV [3]. EfFectively, the presence of I'i produces a
slight increase ( 10%) in o~. This increase depends on
the Q value (E~). For large Eg, the effect of the coupling
is insignificant. As Eg is lowered cr~ is increased when
I'& is taken into account. This is expected on physical
grounds since the resonance is reached even if the en-
ergy transfer is smaller than Eg. As we see clearly in the
figure, the effect is basically restricted to E, m & V~.

In our discussion so far we have considered only the
spreading width of the doorway. The approximation

is quite reasonable in heavy nuclei such
as Pb. For light nuclei the opposite limit is usually
attained, I'GR I'GR. In fact the soft giant dipole res-

where the complex turning points rp and ri are solutions
of

r+
k',

i

"o,
I

= k'
(

"'
]i = 0.+pre ) (ri )

The action f"' k(r)dr is complex, but only the real
part enters in the calculation of cr~. The same model
would imply an insignificant contribution of the cross

term crF+, since there is a mismatch in the phases
of @+ and @' . We now use a parabolic barrier approx-
imation, and approximate the sum over E by an inte-

gral. Upon integration, we obtain the simple extension
of Wong's formula [10],

oF(Vjy + ReAy)

huR~~
ln 1+exp ]E —Rely —Vg(+)]),

2r

where Vjy is the Coulomb barrier, R~ is its radius,
and hu is related to the barrier curvature hu
(5/p)dzVg/drz ]„~

The total fusion cross section we obtain has the follow-

ing form:

op = &(A+) oz(Va+ ReA+) +A(A ) op (V~+ ReA ),
(21)

onance in iiLi has its width 100% escape since complex
excited states in the vicinity of the resonance do not exist.
It is of importance therefore to consider the eEect of I GR
on the fusion cross section. For simplicity we assume the
giant resonance escapes by coupling to one channel which

we call the "breakup" channel. The wave function of this
three-body channel (e.g. , pLi+2n+zpsPb) is denoted by
@(+)

We assume that this channel is reached directly from

the ground state and indirectly via the doorway T.he set
of equations (9) is now modified to read

E —Kp —Up —Vp (b) 4p = Vpg 4'~Pol (+) (+)

E —K& —U& —VP"(b) 4„'+' (22)
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FIG. 1. The ratio oi;(I'zi, I'z~)/cry (I' $q= 0, I'zi ——0) for the
system Li+ Pb, j." = 2 MeV, I'~ = 1 MeV, and Eg =
0,2 MeV. See text for details.
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(
=V ei" + E —' " ei+l

)
where we have introduced the usual dynamic polariza

tion potential that accounts for the coupling of 4p+ to
4&i+1 and @z(+1 to @&(+1. In deriving Eq. (22) we have

employed the approximation Vg'(b):—Vpt, Gi,
+ V~ and

V& "(b) = Vqg GI+ Vsg, where G&+ represents the prop-
agation in the breakup channel.

In principle, Im V&~ '(b) is related to I'&~ and, naively

speaking, it should be added to I'&I to obtain the total
width of the resonance in Eq. (22). However, this is com-

pletely misleading since I't and thus Im V&~ (b) describe
the actual loss of the projectile (or target), whereas I'i
describes its surviva/. In the fusion process the efFect of
the breakup of one of the partners naturally leads to a re-

duction of the cross section [3]. This is so, since breakup
couplings lead to a repulsive real part and an absorp-
tive imaginary part of Vi'~i. Both of these lead to lower

penetrabilities at energies in the vicinity of the Coulomb
barrier.

Since Vi'" is generally small compared to other poten-
tials in the problem and is of longer range, its effect on
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oF = —) (28+1)Tt(Vo,i =0)

OO

x exp
0

Im Vpoi d (23)

It should be easy to convince oneself that the breakup
survival probability exp —(2jh) jo Im Vo, ~ dt involves

the wave functions 40~+ and 4&+ can be conveniently
expressed as a damping factor. In Refs. [3] and [4] it was
shown that a~ can be conveniently expressed as (after
approximating VP ' by its local equivalent version, see
Ref. [11] for details)

an appropriate energy scale I &I and an appropriate time
scale, the effective collision time ~,. Thus we write
2 Jo Im VJ' dt = I'q r, (E)

The treatment of Vo~ '(b) follows similar steps as
above (the Q values in both cases are roughly equal);
the diKerence resides in higher-order effects in VJ (h).
Thus we also write 2 Jo Im Vop" dt = I'o r, (E), where

10 may be called the "channel escape width. " For sim-

plicity we set I'o ——I'&, We now introduce the mixingt = 1

parameter considered earlier in the study of the decay of
r,'giant resonances [12] p =, ', . Thus for a fixed I'g,

d+ d

I'& ——(1 —p, ) I'g, I'& ——p,l'g, we have for the fusion cross
section

g(g ) e-(i—~) + .(&)

~F(p) = —,).(2&+1)
e=o 1+exp ~ VB+p A+ p + 2

R'' —E

g(p ) e-(i-~) +r.(t)
+

1+exp ~ VB+Re p + 2„&+, —F
(24)

In Fig. 1, we show the ratio o(I'&, I'&)/o(I'z ——O, I'z
= 0) for iiLi+ s Pb, taking for E~ = 0.2 MeV. We took
j. &

——2 MeV and I'& ——1 MeV. It is clear that now the
fusion is strongly hindered by a factor of 100 in the bar-
rier region. Thus the eKect of I'&~ is much more important

than that of I'&. Considering now the realistic version of
the soft dipole mode in iiLi, its width is totally escape
(to the 2n+sLi channel) and thus the fusion of i iLi is hin-

dered [3,13]. Finally, we mention that if there is no direct
coupling between the entrance channel and the breakup
one, Voo' (6) = 0, Eq. (24) is slightly modified. We leave

the discussions of this case to a future publication.
In conclusion, we have developed a reaction theory that

enables the inclusion of the width of the giant resonance
in the fusion cross section. We found that the damping
width only mildly enhances o~ at lower than barrier ener-

gies, whereas the escape width strongly hinders it. More
detailed application of the new theory will be published
elsewhere. M.S.H. was supported in part by CNPq.
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